

中华人民共和国国家标准

P

GB 50057 - 2010

建筑物防雷设计规范

Code for design protection of structures against lightning

2010-11-03 发布

2011-10-01 实施

中华人民共和国住房和城乡建设部 中华人民共和国国家质量监督检验检疫总局

中华人民共和国国家标准

建筑物防雷设计规范

Code for design protection of structures against lightning

GB 50057 - 2010

主编部门:中国机械工业联合会

批准部门:中华人民共和国住房和城乡建设部

施行日期:2 0 1 1 年 1 0 月 1 日

中国计划出版社

2011 北 京

中华人民共和国国家标准 建筑物防雷设计规范

GB 50057-2010

公

中国计划出版社出版

(地址:北京市西城区木樨地北里甲 11 号国宏大厦 C座 4 层) (邮政编码:100038 电话:63906433 63906381)

> 新华书店北京发行所发行 世界知识印刷厂印刷

850×1168 毫米 1/32 6.25 印张 158 千字 2011 年 8 月第 1 版 2011 年 8 月第 1 次印刷 印数 1—30100 册

公

统一书号:1580177 • 590 定价:38.00 元

中华人民共和国住房和城乡建设部公告

第 824 号

关于发布国家标准 《建筑物防雷设计规范》的公告

现批准《建筑物防雷设计规范》为国家标准,编号为GB 50057—2010,自 2011年10月1日起实施。其中,第3.0.2、3.0.3、3.0.4、4.1.1、4.1.2、4.2.1(2、3)、4.2.3(1、2)、4.2.4(8)、4.3.3、4.3.5(6)、4.3.8(4、5)、4.4.3、4.5.8、6.1.2条(款)为强制性条文,必须严格执行。原《建筑物防雷设计规范》GB 50057—94(2000年版)同时废止。

本规范由我部标准定额研究所组织中国计划出版社出版发行。

中华人民共和国住房和城乡建设部 二〇一〇年十一月三日

前 言

本规范是根据原建设部《关于印发〈2005年工程建设标准规范制订、修订计划(第一批)〉的通知》(建标函[2005]84号)的要求,由中国中元国际工程公司会同有关单位对《建筑物防雷设计规范》GB 50057—94(2000年版)修订而成的。

本规范在修订过程中,规范编制组完成征求意见稿后,在网上 并发函至有关单位和个人征求意见,根据所征求的意见完成送审稿,最后经审查定稿。

本规范共分6章和9个附录。主要内容包括:总则,术语,建筑物的防雷分类,建筑物的防雷措施,防雷装置,防雷击电磁脉冲等。

本规范修订的主要内容为:

- 1. 增加了术语一章。
- 2. 变更了防接触电压和防跨步电压的措施。
- 3. 补充了外部防雷装置采用不同金属物的要求。
- 4. 修改了防侧击的规定。
- 5. 详细规定了电气系统和电子系统选用电涌保护器的要求。
- 6. 简化了雷击大地的年平均密度计算公式,并相应调整了预 计雷击次数判定建筑物的防雷分类的数值。
 - 7. 部分条款作了更具体的要求。

本规范中以黑体字标志的条文为强制性条文,必须严格执行。

本规范由住房和城乡建设部负责管理和对强制性条文的解释,由中国机械工业联合会负责日常管理,由中国中元国际工程公司负责具体技术内容的解释。本规范在执行过程中,请各单位结合工程实践,认真总结经验,注意积累资料,如发现需要修改或补

充之处,请将意见和建议反馈给中国中元国际工程公司(地址:北京市海淀区西三环北路5号,邮政编码100089),以便今后修订时参考。

本规范组织单位、主编单位、参编单位、主要起草人和主要审查人:

组织单位:中国机械工业勘察设计协会

主编单位:中国中元国际工程公司

参编单位: 五洲工程设计研究院

中国气象学会雷电防护委员会

北京市避雷装置安全检测中心

中国石化工程建设公司

中国建筑设计研究院

主要起草人: 林维勇 黄友根 焦兴学 陶战驹 王素英

杨少杰 宋平健 黄 旭 张文才 徐 辉

主要审查人:张力欣 王厚余 丁 杰 方 磊 欧清礼

尹君平 王云福 关象石 杨维林

目 次

1	总	则			•••••				(1)
2	术	语			•••••			•••••	(2)
3	建约	筑物的防	雷分类						(8)
4	建约	筑物的防	雷措施						(10))
	4.1	基本规划	ē						(10))
	4.2	第一类例	方雷建筑物	的防雷措	·施				(10))
	4.3	第二类队	方雷建筑物	的防雷措	- 施 · · · · ·			·····	(20))
	4.4	第三类队	方雷建筑物	的防雷措	施				(27	7)
	4.5	其他防電	雪措施						(31	1)
5	防气	雷装置							(34	1)
	5, 1	防雷装置	量使用的材	料		·			(34	1)
	5.2	接闪器				,,,			(35	5)
	5.3	引下线			Jelegia err				(39))
	5.4	接地装置	£						(4())
6	防气	雷击电磁	旅冲.	.,./. <i>.</i> /					(43	3)
	6.1	基本规划	ē						(43	3)
	6.2	防雷区和	的雷击电	磁脉冲				• • • • • • • • • • • • • • • • • • • •	(43	3)
	6.3	屏蔽、接	地和等电位	立连接的:	要求 "				(45	5)
	6.4	安装和流	选择电涌保	护器的要	來			• • • • • • • • • • • • • • • • • • • •	(55	5)
13	寸录 /	建筑	物年预计	雷击次	数				(59	9)
18	计录上	建筑:	物易受雷	击的部位	位				(62	2)
13	讨录(接地	装置冲击	接地电阻	且与工步	页接地电	阻的换算	<u>[</u>	(6;	3)
131	才录 L	() 滚球	法确定接	闪器的	保护范	围			(6)	6)
139	寸录 E	分流	系数 k。…						(7'	7)

附录 F 雷电流	(80)
附录 G 环路中感应电压和电流的计算	(83)
附录 H 电缆从户外进入户内的屏蔽层截面积	(86)
附录」 电涌保护器	(88)
本规范用词说明	(96)
引用标准名录	(97)
附:条文说明	(99)

Contents

1	Ger	neral provisions	(1)
2	Ter	rms	(2)
3	Cla	ssification of structures to be protected against	
	ligh	ntning	(8)
4	Pro	tection measures for structures against lightning	(10)
	4.1	Basic requirement	(10)
	4.2	Protection measures for first class of structures to be	
		protected against lightning	(10)
	4.3	Protection measures for second class of structures to	
		be protected against lightning	(20)
	4.4	Protection measures for third class of structures to be	
		protected against lightning	(27)
	4.5	Other protection measures against lightning	(31)
5	Lig	thing protection system	(34)
	5.1	Materials for lightning protection system	(34)
	5, 2	Air-termination system	(35)
	5, 3	Down-conductor system	(39)
	5.4	Earth-termination system	(40)
6		stection against LEMP(lightning electromagnetic	
	/ 5	oulse)	
	6. 1	Basic requirement	(43)
X	6.2	Lightning protection zones and protection against	
		LEMP	(43)
	6.3	Requirements for magnetic shielding, earthing and	

equipot	ential bonding	(45)
6.4 Require	ements for installation and selection of SPDs	
(surge	protective devices)	(55)
Appendix A	Expected annual number of lightning	
	flash for structures	(59)
Appendix B	Structure parts suffered easily by lightning	
	stroke ·····	(62)
Appendix C	Conversion from power frequency earthing	
	resistance to impulse earthing resistance of	
	earth-termination system	(63)
Appendix D	Determination of protected volume of	
	air-termination system with rolling sphere	
	method	(66)
Appendix E	Values of coefficient k	(77)
Appendix F	Lightning current	(80)
Appendix G	Calculation of induced voltages and	
	currents in loops	(83)
Appendix H	Cross section of the entering cable screen	(8-6)
Appendix J	Surge protective devices	(88)
Explanation of	of wording in this code	(96)
List of quoted	d standards	(97)
Addition: Ex	planation of provisions	(99)

1 总 则

- 1.0.1 为使建(构)筑物防雷设计因地制宜地采取防雷措施,防止或减少雷击建(构)筑物所发生的人身伤亡和文物、财产损失,以及雷击电磁脉冲引发的电气和电子系统损坏或错误运行,做到安全可靠、技术先进、经济合理,制定本规范。
- 1.0.2 本规范适用于新建、扩建、改建建(构)筑物的防雷设计。
- 1.0.3 建(构)筑物防雷设计,应在认真调查地理、地质、土壤、气象、环境等条件和雷电活动规律,以及被保护物的特点等的基础上,详细研究并确定防雷装置的形式及其布置。
- 1.0.4 建(构)筑物防雷设计,除应符合本规范外,尚应符合国家 现行有关标准的规定。

该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载 http://www.jisupdfeditor.com/

2 术 语

- 2.0.1 对地闪击 lightning flash to earth 雷云与大地(含地上的突出物)之间的一次或多次放电。
- **2.0.2** 雷击 lightning stroke 对地闪击中的一次放电。
- 2.0.3 雷击点 point of strike 闪击击在大地或其上突出物上的那一点。一次闪击可能有多个雷击点。
- 2.0.4 雷电流 lightning current 流经雷击点的电流。
- 2.0.5 防雷装置 lightning protection system (LPS) 用于减少闪击击于建(构)筑物上或建(构)筑物附近造成的物质性损害和人身伤亡,由外部防雷装置和内部防雷装置组成。
- 2.0.6 外部防雷装置 external lightning protection system 由接闪器、引下线和接地装置组成。
- 2.0.7 内部防雷装置 internal lightning protection system 由防雷等电位连接和与外部防雷装置的间隔距离组成。
- 2.0.8 接闪器 air-termination system 由拦截闪击的接闪杆、接闪带、接闪线、接闪网以及金属屋面、金属构件等组成。
- 2.0.9 引下线 down-conductor system 用于将雷电流从接闪器传导至接地装置的导体。
- 2.0.10 接地装置 earth-termination system 接地体和接地线的总合,用于传导雷电流并将其流散入大地。
- 2.0.11 接地体 earth electrode

. 2 .

埋入土壤中或混凝土基础中作散流用的导体。

2.0.12 接地线 earthing conductor

从引下线断接卡或换线处至接地体的连接导体;或从接地端 子、等电位连接带至接地体的连接导体。

2.0.13 直击雷 direct lightning flash

闪击直接击于建(构)筑物、其他物体、大地或外部防雷装置上,产生电效应、热效应和机械力者。

2.0.14 闪电静电感应 lightning electrostatic induction

由于雷云的作用,使附近导体上感应出与雷云符号相反的电荷,雷云主放电时,先导通道中的电荷迅速中和,在导体上的感应电荷得到释放,如没有就近泄入地中就会产生很高的电位。

- 2.0.15 闪电电磁感应 lightning electromagnetic induction 由于雷电流迅速变化在其周围空间产生瞬变的强电磁场,使附近导体上感应出很高的电动势。
- 2.0.16 闪电感应 lightning induction

闪电放电时,在附近导体上产生的雷电静电感应和雷电电磁 感应,它可能使金属部件之间产生火花放电。

2.0.17 闪电电涌 lightning surge

闪电击于防雷装置或线路上以及由闪电静电感应或雷击电磁脉冲引发,表现为过电压、过电流的瞬态波。

- 2.0.18 闪电电涌侵入 lightning surge on incoming services 由于雷电对架空线路、电缆线路或金属管道的作用,雷电波,即闪电电涌,可能沿着这些管线侵入屋内,危及人身安全或损坏设备。
- 2.0.19 防雷等电位连接 lightning equipotential bonding (LEB)

将分开的诸金属物体直接用连接导体或经电涌保护器连接到 防雷装置上以减小雷电流引发的电位差。

2.0.20 等电位连接带 bonding bar

将金属装置、外来导电物、电力线路、电信线路及其他线路连 于其上以能与防雷装置做等电位连接的金属带。

- 2.0.21 等电位连接导体 bonding conductor 将分开的诸导电性物体连接到防雷装置的导体。
- 2.0.22 等电位连接网络 bonding network (BN) 将建(构)筑物和建(构)筑物内系统(带电导体除外)的所有导电性物体互相连接组成的一个网。
- 2.0.23 接地系统 earthing system 将等电位连接网络和接地装置连在一起的整个系统。
- 2.0.24 防雷区 lightning protection zone (LPZ) 划分雷击电磁环境的区,一个防雷区的区界面不一定要有实物界面,如不一定要有墙壁、地板或天花板作为区界面。
- 2.0.25 雷击电磁脉冲 lightning electromagnetic impulse (LEMP)

雷电流经电阻、电感、电容耦合产生的电磁效应,包含闪电电 涌和辐射电磁场。

2.0.26 电气系统 electrical system 由低压供电组合部件构成的系统。也称低压配电系统或低压配电线路。

- 2.0.27 电子系统 electronic system 由敏感电子组合部件构成的系统。
- 2.0.28 建(构)筑物内系统 internal system 建(构)筑物内的电气系统和电子系统。
- 2.0.29 电涌保护器 surge protective device (SPD)

用于限制瞬态过电压和分泄电涌电流的器件。它至少含有一 个非线性元件。

2.0.30 保护模式 modes of protection

电气系统电涌保护器的保护部件可连接在相对相、相对地、相 对中性线、中性线对地及其组合,以及电子系统电涌保护器的保护

部件连接在线对线、线对地及其组合。

2.0.31 最大持续运行电压 maximum continuous operating voltage (U_c)

可持续加于电气系统电涌保护器保护模式的最大方均根电压或直流电压;可持续加于电子系统电涌保护器端子上,且不致引起电涌保护器传输特性减低的最大方均根电压或直流电压。

- 2.0.32 标称放电电流 nominal discharge current (I_n) 流过电涌保护器 8/20μs 电流波的峰值。
- 2.0.33 冲击电流 impulse current (I_{imp}) 由电流幅值 I_{peak} 、电荷 Q 和单位能量 W/R 所限定。
- **2.0.34** 以 I_{imp} 试验的电涌保护器 SPD tested with I_{imp} 耐得起 $10/350\mu s$ 典型波形的部分雷电流的电涌保护器需要用 I_{imp} 电流做相应的冲击试验。

电气系统中采用 I 级试验的电涌保护器要用标称放电电流 I_n 、 $1.2/50\mu$ s 冲击电压和最大冲击电流 I_{imp} 做试验。 I 级试验也可用 T1 外加方框表示,即 T1 。

2.0.36 以 In 试验的电涌保护器 SPD tested with In

耐得起 $8/20\mu s$ 典型波形的感应电涌电流的电涌保护器需要用 I_n 电流做相应的冲击试验。

2.0.37 Ⅱ级试验 class Ⅱ test

电气系统中采用 II 级试验的电涌保护器要用标称放电电流 I_n 、1. 2/50μs 冲击电压和 8/20μs 电流波最大放电电流 I_{max} 做试验。 II 级试验也可用 T2 外加方框表示,即 T2 。

2.0.38 以组合波试验的电涌保护器 SPD tested with a combination wave

耐得起 8/20μs 典型波形的感应电涌电流的电涌保护器需要用 I_{sc}短路电流做相应的冲击试验。

2.0.39 Ⅲ级试验 class Ⅲ test

电气系统中采用 II 级试验的电涌保护器要用组合波做试验。组合波定义为由 2Ω组合波发生器产生 1.2/50μs 开路电压 U_∞和 8/20μs 短路电流 I_{sc}。 II 级试验也可用 T3 外加方框表示,即 T3。

2.0.40 电压开关型电涌保护器 voltage switching type SPD

无电涌出现时为高阻抗,当出现电压电涌时突变为低阻抗。通常采用放电间隙、充气放电管、硅可控整流器或三端双向可控硅元件做电压开关型电涌保护器的组件。也称"克罗巴型"电涌保护器。具有不连续的电压、电流特性。

2.0.41 限压型电涌保护器 voltage limiting type SPD

无电涌出现时为高阻抗,随着电涌电流和电压的增加,阻抗连续变小。通常采用压敏电阻、抑制二极管作限压型电涌保护器的组件。也称"箝压型"电涌保护器。具有连续的电压、电流特性。

2.0.42 组合型电涌保护器 combination type SPD

由电压开关型元件和限压型元件组合而成的电涌保护器,其 特性随所加电压的特性可以表现为电压开关型、限压型或电压开 关型和限压型皆有。

2.0.43 测量的限制电压 measured limiting voltage

施加规定波形和幅值的冲击波时,在电涌保护器接线端子间测得的最大电压值。

2.0.44 电压保护水平 voltage protection level (Up)

表征电涌保护器限制接线端子间电压的性能参数,其值可从 优先值的列表中选择。电压保护水平值应大于所测量的限制电压 的最高值。

2.0.45 1.2/50μs 冲击电压 1.2/50μs voltage impulse

规定的波头时间 T_1 为 $1.2\mu s$ 、半值时间 T_2 为 $50\mu s$ 的冲击电压。

2.0.46 8/20μs 冲击电流 8/20μs current impulse

• 6 •

为 20μs 的 冲击电

规定的波头时间 T_1 为 $8\mu s$ 、半值时间 T_2 为 $20\mu s$ 的冲击电流。

2.0.47 设备耐冲击电压额定值 rated impulse withstand voltage of equipment (U_w)

设备制造商给予的设备耐冲击电压额定值,表征其绝缘防过电压的耐受能力。

2.0.48 插入损耗 insertion loss

电气系统中,在给定频率下,连接到给定电源系统的电涌保护器的插入损耗为电源线上紧靠电涌保护器接入点之后,在被试电涌保护器接入前后的电压比,结果用 dB表示。电子系统中,由于在传输系统中插入一个电涌保护器所引起的损耗,它是在电涌保护器插入前传递到后面的系统部分的功率与电涌保护器插入后传递到同一部分的功率之比。通常用 dB表示。

2.0.49 回波损耗 return loss 反射系数倒数的模。以分贝(dB)表示。

2.0.50 近端串扰 near-end crosstalk (NEXT)

串扰在被干扰的通道中传输,其方向与产生干扰的通道中电流传输的方向相反。在被干扰的通道中产生的近端串扰,其端口通常靠近产生干扰的通道的供能端,或与供能端重合。

3 建筑物的防雷分类

- 3.0.1 建筑物应根据建筑物的重要性、使用性质、发生雷电事故的可能性和后果,按防需要求分为三类。
- 3.0.2 在可能发生对地闪击的地区,遇下列情况之一时,应划为 第一类防雷建筑物:
- 1 凡制造、使用或贮存火炸药及其制品的危险建筑物,因电火花而引起爆炸、爆轰,会造成巨大破坏和人身伤亡者。
 - 2 具有 0 区或 20 区爆炸危险场所的建筑物。
- 3 具有 1 区或 21 区爆炸危险场所的建筑物, 因电火花而引起爆炸, 会造成巨大破坏和人身伤亡者。
- 3.0.3 在可能发生对地闪击的地区,遇下列情况之一时,应划为 第二类防雷建筑物:
 - 1 国家级重点文物保护的建筑物。
- 2 国家级的会堂、办公建筑物、大型展览和博览建筑物、大型 火车站和飞机场、国宾馆,国家级档案馆、大型城市的重要给水泵 房等特别重要的建筑物。

注:飞机场不含停放飞机的露天场所和跑道。

- 3 国家级计算中心、国际通信枢纽等对国民经济有重要意义的建筑物。
 - 4 国家特级和甲级大型体育馆。
- 5 制造、使用或贮存火炸药及其制品的危险建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。
- 6 具有 1 区或 21 区爆炸危险场所的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。
 - 7 具有 2 区或 22 区爆炸危险场所的建筑物。

- 8 有爆炸危险的露天钢质封闭气罐。
- 9 预计雷击次数大于 0.05 次/a 的部、省级办公建筑物和其他重要或人员密集的公共建筑物以及火灾危险场所。
- 10 预计雷击次数大于 0.25 次/a 的住宅、办公楼等一般性民用建筑物或一般性工业建筑物。
- 3.0.4 在可能发生对地闪击的地区,遇下列情况之一时,应划为 第三类防雷建筑物:
 - 1 省级重点文物保护的建筑物及省级档案馆。
- 2 预计雷击次数大于或等于 0.01 次/a,且小于或等于 0.05 次/a 的部、省级办公建筑物和其他重要或人员密集的公共建筑物,以及火灾危险场所。
- 3 预计雷击次数大于或等于 0.05 次/a,且小于或等于 0.25 次/a 的住宅、办公楼等一般性民用建筑物或一般性工业建筑物。
- 4 在平均雷暴日大于 15d/a 的地区,高度在 15m 及以上的烟囱、水塔等孤立的高耸建筑物;在平均雷暴日小于或等于 15d/a 的地区,高度在 20m 及以上的烟囱、水塔等孤立的高耸建筑物。

4 建筑物的防雷措施

4.1 基本规定

4.1.1 各类防雷建筑物应设防直击雷的外部防雷装置,并应采取 防闪电电涌侵入的措施。

第一类防雷建筑物和本规范第 3.0.3 条第 5~7 款所规定的 第二类防雷建筑物,尚应采取防闪电感应的措施。

- 4.1.2 各类防雷建筑物应设内部防雷装置,并应符合下列规定:
- 1 在建筑物的地下室或地面层处,下列物体应与防雷装置做 防雷等电位连接:
 - 1)建筑物金属体。
 - 2)金属装置。
 - 3)建筑物内系统。
 - 4)进出建筑物的金属管线。
- 2 除本条第1款的措施外,外部防雷装置与建筑物金属体、 金属装置、建筑物内系统之间,尚应满足间隔距离的要求。
- 4.1.3 本规范第 3.0.3 条第 2~4 款所规定的第二类防雷建筑物 尚应采取防雷击电磁脉冲的措施。其他各类防雷建筑物,当其建筑物内系统所接设备的重要性高,以及所处雷击磁场环境和加于设备的闪电电涌无法满足要求时,也应采取防雷击电磁脉冲的措施。防雷击电磁脉冲的措施应符合本规范第 6 章的规定。

4.2 第一类防雷建筑物的防雷措施

4.2.1 第一类防雷建筑物防直击雷的措施应符合下列规定:

· 10 ·

- 1 应装设独立接闪杆或架空接闪线或网。架空打网的网络阿拉尔Com/ 格尺寸不应大于 5m×5m 或 6m×4m。
- 2 排放爆炸危险气体、蒸气或粉尘的放散管、呼吸阀、排风管等的管口外的下列空间应处于接闪器的保护范围内:
 - 1) 当有管帽时应按表 4.2.1 的规定确定。
 - 2) 当无管帽时,应为管口上方半径 5m 的半球体。
 - 3)接闪器与雷闪的接触点应设在本款第1项或第2项所规 定的空间之外。

表 4.2.1 有管帽的管口外处于接闪器保护范围内的 3	至旧	内的	围口	范围	护	保	器	N	于报	外处		管	帽的	右管	1. 2. 1	表
------------------------------	----	----	----	----	---	---	---	---	----	----	--	---	----	----	---------	---

装置内的压力与周围 空气压力的压力差(kPa)	排放物对比于空气	管帽以上的 垂直距离(m)	距管口处的 水平距离(m) 2	
<5	重于空气	1		
5~25	重于空气	2.5	5	
€25	轻于空气	2.5	. 5	
>25	重或轻于空气	5	5	

注:相对密度小于或等于 0,75 的爆炸性气体规定为轻于空气的气体;相对密度大于 0,75 的爆炸性气体规定为重于空气的气体。

- 3 排放爆炸危险气体、蒸气或粉尘的放散管、呼吸阀、排风管等,当其排放物达不到爆炸浓度、长期点火燃烧、一排放就点火燃烧,以及发生事故时排放物才达到爆炸浓度的通风管、安全阀,接闪器的保护范围应保护到管帽,无管帽时应保护到管口。
- 4 独立接闪杆的杆塔、架空接闪线的端部和架空接闪网的每根支柱处应至少设一根引下线。对用金属制成或有焊接、绑扎连接钢筋网的杆塔、支柱,宜利用金属杆塔或钢筋网作为引下线。
- 5 独立接闪杆和架空接闪线或网的支柱及其接地装置与被保护建筑物及与其有联系的管道、电缆等金属物之间的间隔距离(图 4.2.1),应按下列公式计算,且不得小于 3m:

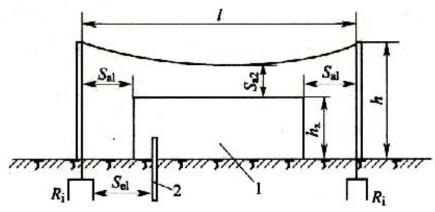


图 4.2.1 防雷装置至被保护物的间隔距离 1—被保护建筑物;2—金属管道

1)地上部分:

当
$$h_x < 5R_i$$
 时: $S_{a1} \ge 0.4(R_i + 0.1h_x)$ (4.2.1-1)

当
$$h_x \geqslant 5R_i$$
 时: $S_{ai} \geqslant 0.1(R_i + h_x)$ (4.2.1-2)

2)地下部分:

$$S_{\rm el} \geqslant 0.4R_{\rm i}$$
 (4. 2. 1-3)

式中: $S_{\rm al}$ — 空气中的间隔距离(m);

 S_{el} — 地中的间隔距离(m);

 R_i ——独立接闪杆、架空接闪线或网支柱处接地装置的冲击接地电阻(Ω);

 h_x 被保护建筑物或计算点的高度(m)。

6 架空接闪线至屋面和各种突出屋面的风帽、放散管等物体之间的间隔距离(图 4.2.1),应按下列公式计算,且不应小于 3m:

1)当
$$(h+\frac{l}{2})<5R_i$$
时:

$$S_{a2} \geqslant 0.2R_i + 0.03(h + \frac{l}{2})$$
 (4.2.1-4)

2)当 $(h+\frac{l}{2}) \geqslant 5R_i$ 时:

$$S_{a2} \geqslant 0.05R_i + 0.06(h + \frac{l}{2})$$
 (4.2.1-5)

该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载 http://www.jisupdfeditor.com/

式中: S_{a2} ——接闪线至被保护物在空气中的间隔距离(m);

h——接闪线的支柱高度(m);

1---接闪线的水平长度(m)。

- 7 架空接闪网至屋面和各种突出屋面的风帽、放散管等物体 之间的间隔距离,应按下列公式计算,且不应小于3m:
 - 1) 当 $(h+l_1)$ < $5R_i$ 时:

$$S_{s2} \geqslant \frac{1}{n} [0.4R_i + 0.06(h + l_1)]$$
 (4.2.1-6)

2)当 $(h+l_1) \geqslant 5R_i$ 时:

$$S_{a2} \geqslant \frac{1}{n} [0.1R_i + 0.12(h + l_1)]$$
 (4. 2. 1-7)

式中: S_{*2} 接闪网至被保护物在空气中的间隔距离(m);

l₁——从接闪网中间最低点沿导体至最近支柱的距离 (m);

n——从接闪网中间最低点沿导体至最近不同支柱并有同一距离 l₁ 的个数。

- 8 独立接闪杆、架空接闪线或架空接闪网应设独立的接地装置,每一引下线的冲击接地电阻不宜大于 10Ω。在上壤电阻率高的地区,可适当增大冲击接地电阻,但在 3000Ωm 以下的地区,冲击接地电阻不应大于 30Ω。
- 4.2.2 第一类防雷建筑物防闪电感应应符合下列规定:
- 1 建筑物内的设备、管道、构架、电缆金属外皮、钢屋架、钢窗等较大金属物和突出屋面的放散管、风管等金属物,均应接到防闪电感应的接地装置上。

金属屋面周边每隔 18m~24m 应采用引下线接地一次。

现场浇灌或用顶制构件组成的钢筋混凝土屋面,其钢筋网的 交叉点应绑扎或焊接,并应每隔 18m~24m 采用引下线接地一次。

2 平行敷设的管道、构架和电缆金属外皮等长金属物,其净

距小于 100mm 时,应采用金属线跨接,跨接点的间距不应大于 30m,交叉净距小于 100mm 时,其交叉处也应跨接。

当长金属物的弯头、阀门、法兰盘等连接处的过渡电阻大于 0.03Ω时,连接处应用金属线跨接。对有不少于 5 根螺栓连接的 法兰盘,在非腐蚀环境下,可不跨接。

3 防闪电感应的接地装置应与电气和电子系统的接地装置共用,其工频接地电阻不宜大于10Ω。防闪电感应的接地装置与独立接闪杆、架空接闪线或架空接闪网的接地装置之间的间隔距离,应符合本规范第4.2.1条第5款的规定。

当屋内设有等电位连接的接地干线时,其与防闪电感应接地 装置的连接不应少于2处。

- 4.2.3 第一类防雷建筑物防闪电电涌侵入的措施应符合下列规定:
- 1 室外低压配电线路应全线采用电缆直接埋地敷设,在入户 处应将电缆的金属外皮、钢管接到等电位连接带或防闪电感应的 接地装置上。
- 2 当全线采用电缆有困难时,应采用钢筋混凝土杆和铁横担的架空线,并应使用一段金属铠装电缆或护套电缆穿钢管直接埋地引入。架空线与建筑物的距离不应小于15m。

在电缆与架空线连接处,尚应装设户外型电涌保护器。电涌保护器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于 30Ω。所装设的电涌保护器应选用 I 级试验产品,其电压保护水平应小于或等于 2.5kV,其每一保护模式应选冲击电流等于或大于 10kA;若无户外型电涌保护器,应选用户内型电涌保护器,其使用温度应满足安装处的环境温度,并应安装在防护等级 IP54 的箱内。

当电涌保护器的接线形式为本规范表 J. 1. 2 中的接线形式 2 时,接在中性线和 PE 线间电涌保护器的冲击电流,当为三相系统时不应小于 40kA,当为单相系统时不应小于 20kA。

3 当架空线转换成一段金属铠装电缆或护套电缆穿钢管直接埋地引入时,其埋地长度可按下式计算。

$$l \geqslant 2\sqrt{\rho} \tag{4.2.3}$$

式中: l——电缆铠装或穿电缆的钢管埋地直接与土壤接触的长度(m);

 ρ ——埋电缆处的土壤电阻率(Ω m)。

- 4 在入户处的总配电箱内是否装设电涌保护器应按本规范第6章的规定确定。当需要安装电涌保护器时,电涌保护器的最大持续运行电压值和接线形式应按本规范附录了的规定确定;连接电涌保护器的导体截面应按本规范表 5.1.2 的规定取值。
- 5 电子系统的室外金属导体线路宜全线采用有屏蔽层的电缆埋地或架空敷设,其两端的屏蔽层、加强钢线、钢管等应等电位连接到入户处的终端箱体上,在终端箱内是否装设电涌保护器应按本规范第6章的规定确定。
- 6 当通信线路采用钢筋混凝上杆的架空线时,应使用一段护套电缆穿钢管直接埋地引入,其埋地长度可按本规范式(4.2.3)计算,且不应小于15m。在电缆与架空线连接处,尚应装设户外型电涌保护器。电涌保护器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应人于30Ω。所装设的电涌保护器应选用D1类高能量试验的产品,其电压保护水平和最大持续运行电压值应按本规范附录J的规定确定,连接电涌保护器的导体截面应按本规范表5.1.2的规定取值,每台电涌保护器的短路电流应等于或大于2kA;若无户外型电涌保护器,可选用户内型电涌保护器,但其使用温度应满足安装处的环境温度,并应安装在防护等级IP54的箱内。在入户处的终端箱内是否装设电涌保护器应按本规范第6章的规定确定。
- 7 架空金属管道,在进出建筑物处,应与防闪电感应的接地 装置相连。距离建筑物 100m 内的管道,宜每隔 25m 接地一次,其

冲击接地电阻不应大于 30Ω,并应利用金属支架或钢筋混凝土支架的焊接、绑扎钢筋网作为引下线,其钢筋混凝土基础宜作为接地装置。

埋地或地沟内的金属管道,在进出建筑物处应等电位连接到 等电位连接带或防闪电感应的接地装置上。

- 4.2.4 当难以装设独立的外部防雷装置时,可将接闪杆或网格不大于5m×5m或6m×4m的接闪网或由其混合组成的接闪器直接装在建筑物上,接闪网应按本规范附录B的规定沿屋角、屋脊、屋檐和檐角等易受雷击的部位敷设;当建筑物高度超过30m时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂直面上,也可设在外墙外表面或屋檐边垂直面外,并应符合下列规定:
 - 1 接闪器之间应互相连接。
- 2 引下线不应少于 2 根,并应沿建筑物四周和内庭院四周均 匀或对称布置,其间距沿周长计算不宜大于 12m。
- 3 排放爆炸危险气体、蒸气或粉尘的管道应符合本规范第 4.2.1条第2、3款的规定。
- 4 建筑物应装设等电位连接环,环间垂直距离不应关于 12m,所有引下线、建筑物的金属结构和金属设备均应连到环上。 等电位连接环可利用电气设备的等电位连接干线环路。
- 5 外部防雷的接地装置应围绕建筑物敷设成环形接地体,每根引下线的冲击接地电阻不应大于 10Ω,并应和电气和电子系统等接地装置及所有进入建筑物的金属管道相连,此接地装置可兼作防雷电感应接地之用。
- 6 当每根引下线的冲击接地电阻大于 10Ω 时,外部防雷的 环形接地体宜按下列方法敷设.
 - 1)当土壤电阻率小于或等于 500Ωm 时,对环形接地体所包 围面积的等效圆半径小于 5m 的情况,每一引下线处应 补加水平接地体或垂直接地体。

2)本款第1项补加水平接地体时,其最小长度应按下式计算:

$$l_r = 5 - \sqrt{\frac{A}{\pi}}$$
 (4. 2. 4-1)

式中: $\sqrt{\frac{A}{\pi}}$ — 环形接地体所包围面积的等效圆半径(m);

l_r——补加水平接地体的最小长度(m);

A---环形接地体所包围的面积(m²)。

3)本款第1项补加垂直接地体时,其最小长度应按下式计算:

$$l_{v} = \frac{5 - \sqrt{\frac{A}{\pi}}}{2}$$
 (4. 2. 4-2)

式中: l_v — 补加垂直接地体的最小长度(m)。

4)当土壤电阻率大于 500Ωm、小于或等于 3000Ωm,且对 坏形接地体所包围面积的等效圆半径符合下式的计 算时,每一引下线处应补加水平接地体或垂直接地 体:

$$\sqrt{\frac{A}{\pi}} < \frac{11\rho - 3600}{380} \tag{4.2.4-3}$$

5)本款第 4 项补加水平接地体时,其最小总长度应按下式 计算:

$$l_r = \left(\frac{11\rho - 3600}{380}\right) - \sqrt{\frac{A}{\pi}} \tag{4.2.4-4}$$

6)本款第4项补加垂直接地体时,其最小总长度应按下式 计算:

$$l_{v} = \frac{\left(\frac{11\rho - 3600}{380}\right) - \sqrt{\frac{A}{\pi}}}{2} \qquad (4. \ 2. \ 4-5)$$

- 注:按本款方法敷设接地体以及环形接地体所包围的面积的等效圆半径等于或大于所规定的值时,每根引下线的冲击接地电阻可不作规定。共用接地装置的接地电阻按 50Hz 电气装置的接地电阻确定,应为不大于按人身安全所确定的接地电阻值。
 - 7 当建筑物高于 30m 时, 尚应采取下列防侧击的措施:
 - 1)应从 30m 起每隔不大丁 6m 沿建筑物四周设水平接闪带 并应与引下线相连。
 - 2)30m 及以上外墙上的栏杆、门窗等较大的金属物应与防雷装置连接。
- 8 在电源引入的总配电箱处应装设 I 级试验的电涌保护器。 电涌保护器的电压保护水平值应小于或等于 2.5kV。每一保护模式 的冲击电流值, 当无法确定时, 冲击电流应取等于或大于12.5kA。
- 9 电源总配电箱处所装设的电涌保护器,其每一保护模式的冲击电流值,当电源线路无屏蔽层时宜按式(4.2.4-6)计算,当有屏蔽层时宜按式(4.2.4-7)计算:

$$I_{\rm imp} = \frac{0.5I}{nm} \tag{4.2.4-6}$$

$$I_{\rm imp} = \frac{0.5 IR_s}{n(mR_s + R_c)}$$
 (4. 2. 4-7)

式中: I---雷电流(kA),取 200kA;

n——地下和架空引入的外来金属管道和线路的总数;

m 每一线路内导体芯线的总根数;

 R_s 一屏蔽层每公里的电阻(Ω/km);

 R_{\circ} ——芯线每公里的电阻(Ω/km)。

- 10 电源总配电箱处所装设的电涌保护器,其连接的导体截面应按本规范表 5.1.2 的规定取值,其最大持续运行电压值和接线形式应按本规范附录 J 的规定确定。
 - 注: 当电涌保护器的接线形式为本规范表 J. 1. 2 中的接线形式 2 时,接在中性线和 PE 线间电涌保护器的冲击电流,当为三相系统时不应小于本条第 9 款规定值的 4 倍,当为单相系统时不应小于 2 倍。

- 11 当电子系统的室外线路采用金属线时,在其引入的终端箱处应安装 D1 类高能量试验类型的电涌保护器,其短路电流当无屏蔽层时,宜按式(4.2.4-6)计算,当有屏蔽层时宜按式(4.2.4-7)计算,当无法确定时应选用 2kA。选取电涌保护器的其他参数应符合本规范第 J. 2 节的规定,连接电涌保护器的导体截面应按本规范表 5.1.2 的规定取值。
- 12 当电子系统的室外线路采用光缆时,在其引入的终端箱处的电气线路侧,当无金属线路引出本建筑物至其他有自己接地装置的设备时,可安装 B2 类慢上升率试验类型的电涌保护器,其短路电流应按本规范表 J. 2.1 的规定确定,宜选用 100Λ。
- 13 输送火灾爆炸危险物质的埋地金属管道,当其从室外进入户内处设有绝缘段时,应在绝缘段处跨接符合下列要求的电压 开关型电涌保护器或隔离放电间隙:
 - 1)选用 I 级试验的密封型电涌保护器。
 - 2) 电涌保护器能承受的冲击电流按式(4.2.4-6) 计算,取 m=1。
 - 3)电涌保护器的电压保护水平应小于绝缘段的耐冲击电压水平,无法确定时,应取其等于或大丁 1.5kV 和等于或小丁 2.5kV。
 - 4)输送火灾爆炸危险物质的埋地金属管道在进入建筑物处的防雷等电位连接,应在绝缘段之后管道进入室内处进行,可将电涌保护器的上端头接到等电位连接带。
- 14 具有阴极保护的埋地金属管道,在其从室外进入户内处 宜设绝缘段,应在绝缘段处跨接符合下列要求的电压开关型电涌 保护器或隔离放电间隙:
 - 1)选用 I 级试验的密封型电涌保护器。
 - 2) 电涌保护器能承受的冲击电流按式(4.2.4-6)计算,取 m=1。
 - 3)电涌保护器的电压保护水平应小于绝缘段的耐冲击电压

水平,并应大于阴极保护电源的最大端电压。

- 4) 具有阴极保护的埋地金属管道在进入建筑物处的防雷等 电位连接,应在绝缘段之后管道进入室内处进行,可将电 涌保护器的上端头接到等电位连接带。
- 4.2.5 当树木邻近建筑物且不在接闪器保护范围之内时,树木与建筑物之间的净距不应小于 5m。

4.3 第二类防雷建筑物的防雷措施

- 4.3.1 第二类防雷建筑物外部防雷的措施,宜采用装设在建筑物上的接闪网、接闪带或接闪杆,也可采用由接闪网、接闪带或接闪杆混合组成的接闪器。接闪网、接闪带应按本规范附录 B 的规定沿屋角、屋脊、屋檐和檐角等易受雷击的部位敷设,并应在整个屋面组成不大于 10m×10m 或 12m×8m 的网格;当建筑物高度超过 45m 时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂直面上,也可设在外墙外表面或屋檐边垂直面上,也可设在外墙外表面或屋檐边垂直面外。接闪器之间应互相连接。
- 4.3.2 突出屋面的放散管、风管、烟囱等物体,应按下列方式保护:
- 1 排放爆炸危险气体、蒸气或粉尘的放散管、呼吸阀、排风管等管道应符合本规范第4.2.1条第2款的规定。
- 2 排放无爆炸危险气体、蒸气或粉尘的放散管、烟囱,1 区、21 区、2 区和 22 区爆炸危险场所的自然通风管,0 区和 20 区爆炸危险场所的装有阻火器的放散管、呼吸阀、排风管,以及本规范第4.2.1 条第 3 款所规定的管、阀及煤气和天然气放散管等,其防雷保护应符合下列规定:
 - 1)金属物体可不装接闪器,但应和屋面防雷装置相连。
 - 2)除符合本规范第 4.5.7 条的规定情况外,在屋面接闪器保护范围之外的非金属物体应装接闪器,并应和屋面防雷装置相连。

- 4.3.3 专设引下线不应少于 2 根,并应沿建筑物四周是庭院四周均匀对称布置,其间距沿周长计算不应大于 18m。当建筑物的跨度较大,无法在跨距中间设引下线时,应在跨距两端设引下线并减小其他引下线的间距,专设引下线的平均间距不应大于18m。
- 4.3.4 外部防雷装置的接地应和防闪电感应、内部防雷装置、电气和电子系统等接地共用接地装置,并应与引入的金属管线做等电位连接。外部防雷装置的专设接地装置宜围绕建筑物敷设成环形接地体。
- 4.3.5 利用建筑物的钢筋作为防雷装置时,应符合下列规定:
- 1 建筑物宜利用钢筋混凝土屋顶、梁、柱、基础内的钢筋作为引下线。本规范第 3.0.3 条第 2~4 款、第 9 款、第 10 款的建筑物,当其女儿墙以内的屋顶钢筋网以上的防水和混凝上层允许不保护时,宜利用屋顶钢筋网作为接闪器,本规范第 3.0.3 条第 2~4 款、第 9 款、第 10 款的建筑物为多层建筑,且周围很少有人停留时,宜利用女儿墙压顶板内或檐口内的钢筋作为接闪器。
- 2 当基础采用硅酸盐水泥和周围土壤的含水量不低于 4% 及基础的外表面无防腐层或有沥青质防腐层时,宜利用基础内的 钢筋作为接地装置。当基础的外表面有其他类的防腐层且无桩基可利用时,宜在基础防腐层下面的混凝土垫层内敷设人工环形基础接地体。
- 3 敷设在混凝土中作为防雷装置的钢筋或圆钢,当仅为一根时,其直径不应小于 10mm。被利用作为防雷装置的混凝土构件内有箍筋连接的钢筋时,其截面积总和不应小于一根直径 10mm钢筋的截面积。
- 4 利用基础内钢筋网作为接地体时,在周围地面以下距地面 不应小于 0.5 m,每根引下线所连接的钢筋表面积总和应按下式计 算:

式中: S---钢筋表面积总和(m²);

- k。——分流系数,按本规范附录 E 的规定取值。
- 5 当在建筑物周边的无钢筋的闭合条形混凝上基础内敷设人工基础接地体时,接地体的规格尺寸应按表 4.3.5 的规定确定。

表 4.3.5	第二类防雷建筑物环形人工基础接地体的最小规格尺寸
---------	--------------------------

闭合条形基础的周长(m)	扁钢(mm)	圆钢,根数×直径(mm)		
≥≥60	4×25	2×\$10		
40~60	4×50 4×410或3×41.			
<40	钢材	才表面积总和≥4.24m²		

- 注:1 当长度相同、截面相同时,宜选用扁钢;
 - 2 采用多根圆钢时,其敷设净距不小于直径的 2 倍;
 - 3 利用闭合条形基础内的钢筋作接地体时可按本表校验,除主筋外,可计人 箍筋的表面积。
- 6 构件内有箍筋连接的钢筋或成网状的钢筋,其箍筋与钢筋、钢筋与钢筋应采用土建施工的绑扎法、螺丝、对焊或搭焊连接。单根钢筋、圆钢或外引预埋连接板、线与构件内钢筋应焊接或采用螺栓紧固的卡夹器连接。构件之间必须连接成电气通路。
- 4.3.6 共用接地装置的接地电阻应按 50Hz 电气装置的接地电阻确定,不应大于按人身安全所确定的接地电阻值。在土壤电阻率小于或等于 3000Ωm 时,外部防雷装置的接地体符合下列规定之一以及环形接地体所包围面积的等效圆半径等于或人于所规定的值时,可不计及冲击接地电阻;但当每根专设引下线的冲击接地电阻不大于 10Ω 时,可不按本条第 1、2 款敷设接地体:
- 1 当土壤电阻率 ρ 小于或等于 800Ωm 时,对环形接地体所包围面积的等效圆半径小于 5m 的情况,每一引下线处应补加水平接地体或垂直接地体。当补加水平接地体时,其最小长度应按本规范式(4.2.4-1)计算;当补加垂直接地体时,其最小长度应按本规范式(4.2.4-2)计算。

2 当土壤电阻率大于 800Ωm、小于或等于 3000Ωm,且对环 形接地体所包围的面积的等效圆半径小于按下式的计算值时,每 一引下线处应补加水平接地体或垂直接地体;

$$\sqrt{\frac{A}{\pi}} < \frac{\rho - 550}{50} \tag{4.3.6-1}$$

3 本条第2款补加水平接地体时,其最小总长度应按下式计算:

$$l_{\rm r} - \left(\frac{\rho - 550}{50}\right) - \sqrt{\frac{A}{\pi}}$$
 (4.3.6-2)

4 本条第2款补加垂直接地体时,其最小总长度应按下式计算:

$$l_{v} = \frac{\left(\frac{\rho - 550}{50}\right) - \sqrt{\frac{A}{\pi}}}{2}$$
 (4. 3. 6-3)

- 5 在符合本规范第 4.3.5 条规定的条件下,利用槽形、板形或条形基础的钢筋作为接地体或在基础下面混凝上垫层内敷设人工环形基础接地体,当槽形、板形基础钢筋网在水平面的投影面积或成环的条形基础钢筋或人工环形基础接地体所包围的面积符合下列规定时,可不补加接地体:
 - 1) 当土壤电阻率小于或等于 800Ωm 时, 所包围的面积应大于或等于 79m²。
 - 2) 当土壤电阻率大于 800Ωm 且小于或等于 3000Ωm 时,所包围的面积应人于或等于按下式计算的值:

$$A \geqslant \pi \left(\frac{\rho - 550}{50}\right)^2 \tag{4.3.6-4}$$

- 6 在符合本规范第 4.3.5 条规定的条件下,对 6m 柱距或大 多数柱距为 6m 的单层工业建筑物,当利用柱子基础的钢筋作为 外部防雷装置的接地体并同时符合下列规定时,可不另加接地体:
 - 1)利用全部或绝大多数柱子基础的钢筋作为接地体。
 - 2)柱子基础的钢筋网通过钢柱,钢屋架,钢筋混凝土柱子、

该文档是极速PDF编辑器生成, 如果想去掉该提示,请访问并下载: http://www.jisupdfeditor.com/

屋架、屋面板、吊车梁等构件的钢筋或防雷装置互相连成整体。

- 3)在周围地面以下距地面不小于 0.5 m,每一柱子基础内所 连接的钢筋表面积总和大于或等于 0.82 m²。
- **4.3.7** 本规范第 3.0.3 条第 5~7 款所规定的建筑物,其防闪电感应的措施应符合下列规定。
- 1 建筑物内的设备、管道、构架等主要金属物,应就近接到防雷装置或共用接地装置上。
- 2 除本规范第 3.0.3 条第 7 款所规定的建筑物外,平行敷设的管道、构架和电缆金属外皮等长金属物应符合本规范第 4.2.2 条第 2 款的规定,但长金属物连接处可不跨接。
- **3** 建筑物内防闪电感应的接地干线与接地装置的连接,不应少于 2 处。
- 4.3.8 防止雷电流流经引下线和接地装置时产生的高电位对附近金属物或电气和电子系统线路的反击,应符合下列规定:
- 1 在金属框架的建筑物中,或在钢筋连接在一起、电气贯通的钢筋混凝上框架的建筑物中,金属物或线路与引下线之间的间隔距离可无要求;在其他情况下,金属物或线路与引下线之间的间隔距离应按下式计算。

$$S_{33} \ge 0.06k_c l_x$$
 (4.3.8)

式中: S_{a3} 一空气中的间隔距离(m);

- 1、一引下线计算点到连接点的长度(m),连接点即金属物或电气和电子系统线路与防雷装置之间直接或通过电涌保护器相连之点。
- 2 当金属物或线路与引下线之间有自然或人工接地的钢筋 混凝土构件、金属板、金属网等静电屏蔽物隔开时,金属物或线路 与引下线之间的间隔距离可无要求。
- 3 当金属物或线路与引下线之间有混凝上墙、砖墙隔开时, 其击穿强度应为空气击穿强度的 1/2。当间隔距离不能满足木条

第1款的规定时,金属物应与引下线直接相连,带电线路应通过电 涌保护器与引下线相连。

- 4 在电气接地装置与防雷接地装置共用或相连的情况下,应在低压电源线路引入的总配电箱、配电柜处装设I级试验的电涌保护器。电涌保护器的电压保护水平值应小于或等于 2.5kV。每一保护模式的冲击电流值,当无法确定时应取等于或大于 12.5kA。
- 5 当 Yyn0 型或 Dyn11 型接线的配电变压器设在本建筑物内或附设于外墙处时,应在变压器高压侧装设避雷器;在低压侧的配电屏上,当有线路引出本建筑物至其他有独自敷设接地装置的配电装置时,应在母线上装设Ⅰ级试验的电涌保护器,电涌保护器每一保护模式的冲击电流值,当无法确定时冲击电流应取等于或大于 12.5kA;当无线路引出本建筑物时,应在母线上装设Ⅰ级试验的电涌保护器,电涌保护器每一保护模式的标称放电电流值应等于或大于 5kA。电涌保护器的电压保护水平值应小于或等于 2.5kV。
- 6 低压电源线路引入的总配电箱、配电柜处装设 I 级试验的电涌保护器,以及配电变压器设在本建筑物内或附设于外墙处,并在低压侧配电屏的母线上装设 I 级试验的电涌保护器时,电涌保护器每一保护模式的冲击电流值,当电源线路无屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于 150kA。
- 7 在电子系统的室外线路采用金属线时,其引入的终端箱处应安装 D1 类高能量试验类型的电涌保护器,其短路电流当无屏蔽层时可按本规范式(4.2.4-6)计算,当有屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于 150kA;当无法确定时应选用 1.5kA。
- 8 在电子系统的室外线路采用光缆时,其引入的终端箱处的电气线路侧,当无金属线路引出本建筑物至其他有自己接地装置的设备时可安装 B2 类慢上升率试验类型的电涌保护器,其短路

电流宜选用 75 A。

- 9 输送火灾爆炸危险物质和具有阴极保护的埋地金属管道, 当其从室外进入户内处设有绝缘段时应符合本规范第 4.2.4 条第 13 款和第 14 款的规定,在按本规范式(4.2.4-6)计算时,式中的 雷电流应取等于 150kA。
- 4.3.9 高度超过 45m 的建筑物,除屋顶的外部防雷装置应符合本规范第 4,3.1 条的规定外,尚应符合下列规定:
- 1 对水平突出外墙的物体,当滚球半径 45m 球体从屋顶周边接闪带外向地面垂直下降接触到突出外墙的物体时,应采取相应的防雷措施。
- 2 高于 60m 的建筑物,其上部占高度 20%并超过 60m 的部位应防侧击,防侧击应符合下列规定:
 - 1)在建筑物上部占高度 20%并超过 60m 的部位,各表面上的尖物、墙角、边缘、设备以及显著突出的物体,应按屋顶上的保护措施处理。
 - 2) 在建筑物上部占高度 20%并超过 60m 的部位,布置接闪器应符合对本类防雷建筑物的要求,接闪器应重点布置在墙角、边缘和显著突出的物体上。
 - 3)外部金属物,当其最小尺寸符合本规范第 5.2.7 条第 2 款的规定时,可利用其作为接闪器,还可利用布置在建筑 物垂直边缘处的外部引下线作为接闪器。
 - 4)符合本规范第 4, 3, 5 条规定的钢筋混凝土内钢筋和符合本规范第 5, 3, 5 条规定的建筑物金属框架, 当作为引下线或与引下线连接时,均可利用其作为接闪器。
- 3 外墙内、外竖直敷设的金属管道及金属物的顶端和底端,应与防雷装置等电位连接。
- 4.3.10 有爆炸危险的露天钢质封闭气罐,当其高度小丁或等于60m、罐顶壁厚不小于4mm时,或当其高度大于60m、罐顶壁厚和侧壁壁厚均不小于4mm时,可不装设接闪器,但应接地,且接地

点不应少于 2 处,两接地点问距离不宜大于 30m,每处接地点的冲击接地电阻不应大于 30Ω。当防雷的接地装置符合本规范第 4.3.6条的规定时,可不计及其接地电阻值,但本规范第 4.3.6条 所规定的 10Ω 可改为 30Ω。放散管和呼吸阀的保护应符合本规范第 4.3.2条的规定。

4.4 第三类防雷建筑物的防雷措施

- 4.4.1 第三类防雷建筑物外部防雷的措施宜采用装设在建筑物上的接闪网、接闪带或接闪杆,也可采用由接闪网、接闪带和接闪杆混合组成的接闪器。接闪网、接闪带应按本规范附录 B 的规定沿屋角、屋脊、屋檐和檐角等易受雷击的部位敷设,并应在整个屋面组成不大于 20m×20m 或 24m×16m 的网格;当建筑物高度超过 60m 时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂直面上,也可设在外墙外表面或屋檐边垂直面上,也可设在外墙外表面或屋檐边垂直面外。接闪器之间应互相连接。
- 4.4.2 突出屋面物体的保护措施应符合本规范第 4.3.2 条的规定。
- 4.4.3 专设引下线不应少于 2 根,并应沿建筑物四周和内庭院四周均匀对称布置,其间距沿周长计算不应大于 25m。当建筑物的跨度较大,无法在跨距中间设引下线时,应在跨距两端设引下线并减小其他引下线的间距,专设引下线的平均间距不应大于 25m。
- 4.4.4 防雷装置的接地应与电气和电子系统等接地共用接地装置,并应与引入的金属管线做等电位连接。外部防雷装置的专设接地装置宜围绕建筑物敷设成环形接地体。
- 4.4.5 建筑物宜利用钢筋混凝上屋面、梁、柱、基础内的钢筋作为引下线和接地装置,当其女儿墙以内的屋顶钢筋网以上的防水和混凝上层允许不保护时,宜利用屋顶钢筋网作为接闪器,以及当建筑物为多层建筑,其女儿墙压顶板内或檐口内有钢筋且周围除保安人员巡逻外通常无人停留时,宜利用女儿墙压顶板内或檐口内的钢筋作为接闪器,并应符合本规范第4.3.5 条第2款、第3款、

第6款规定,同时应符合下列规定:

1 利用基础内钢筋网作为接地体时,在周围地面以下距地面 不小于 0.5m 深,每根引下线所连接的钢筋表面积总和应按下式 计算:

$$S \geqslant 1.89k_c^2$$
 (4.4.5)

2 当在建筑物周边的无钢筋的闭合条形混凝土基础内敷设 人工基础接地体时,接地体的规格尺寸应按表 4.4.5 的规定确定。

表 4.4.5 第三类防雷建筑物环形人工基础接地体的最小规格尺寸

闭合条形基础的周长(m)	扁钢(mm)	圆钢,根数×直径(mm)
≥60	-	1×¢10
40~60	4 × 20	2×48
<40	钢材	才表面积总和≥1.89m²

- 注:1 当长度相同、截面相同时,宜选用扁钢;
 - 2 采用多根圆钢时,其敷设净距不小于直径的2倍;
 - 3 利用闭合条形基础内的钢筋作接地体时可按本表校验,除主筋外,可计人 箍筋的表面积。
- 4.4.6 共用接地装置的接地电阻应按 50Hz 电气装置的接地电阻确定,不应大于按人身安全所确定的接地电阻值。在土壤电阻 ~ 率小于或等于 3000Ωm 时,外部防雷装置的接地体当符合下列规定之一以及环形接地体所包围面积的等效圆半径等于或大于所规定的值时可不计及冲击接地电阻;当每根专设引下线的冲击接地电阻不大于 30Ω,但对本规范第 3.0.4 条第 2 款所规定的建筑物则不大于 10Ω 时,可不按本条第 1 款敷设接地体:
- 1 对环形接地体所包围面积的等效圆半径小于 5m 时,每一引下线处应补加水平接地体或垂直接地体。当补加水平接地体时,其最小长度应按本规范式(4.2.4-1)计算;当补加垂直接地体时,其最小长度应按本规范式(4.2.4-2)计算。
- 2 在符合本规范第 4.4.5 条规定的条件下,利用槽形、板形或条形基础的钢筋作为接地体或在基础下面混凝土垫层内敷设人

工环形基础接地体,当槽形、板形基础钢筋网在水平面、皮影面积。或成环的条形基础钢筋或人工环形基础接地体所包围的面积大于或等于 79m² 时,可不补加接地体。

- 3 在符合本规范第 4.4.5 条规定的条件下,对 6m 柱距或大多数柱距为 6m 的单层工业建筑物,当利用柱子基础的钢筋作为外部防雷装置的接地体并同时符合下列规定时,可不另加接地体。
 - 1)利用全部或绝大多数柱子基础的钢筋作为接地体。
 - 2)柱子基础的钢筋网通过钢柱,钢屋架,钢筋混凝土柱子、 屋架、屋面板、吊车梁等构件的钢筋或防雷装置互相连成 整体。
 - 3)在周围地面以下距地面不小于 0.5m 深,每一柱子基础内所连接的钢筋表面积总和大于或等于 0.37m²。
- 4.4.7 防止雷电流流经引下线和接地装置时产生的高电位对附近金属物或电气和电子系统线路的反击,应符合下列规定:
- 1 应符合本规范第 4.3.8 条第 1~5 款的规定,并应按下式 计算:

$$S_{n3} \ge 0.04k_n l_x$$
 (4, 4, 7)

- 2 低压电源线路引入的总配电箱、配电柜处装设 I 级试验的电涌保护器,以及配电变压器设在本建筑物内或附设于外墙处,并在低压侧配电屏的母线上装设 I 级试验的电涌保护器时,电涌保护器每一保护模式的冲击电流值,当电源线路无屏蔽层时可按本规范式(4.2.4-6)计算,当有屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于100kA。
- 3 在电子系统的室外线路采用金属线时,在其引入的终端箱处应安装 D1 类高能量试验类型的电涌保护器,其短路电流当无屏蔽层时可按本规范式(4.2.4-6)计算,当有屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于 100kA;当无法确定时应选用 1.0kA。
 - 4 在电子系统的室外线路采用光缆时,其引入的终端箱处的

- 5 输送火灾爆炸危险物质和具有阴极保护的埋地金属管道, 当其从室外进入户内处设有绝缘段时,应符合本规范第 4.2.4 条 第 13 款和第 14 款的规定,当按本规范式(4.2.4-6)计算时,雷电 流应取等于 100kΛ。
- 4.4.8 高度超过 60m 的建筑物,除屋顶的外部防雷装置应符合本规范第 4.4.1 条的规定外,尚应符合下列规定:
- 1 对水平突出外墙的物体,当滚球半径 60m 球体从屋顶周边接闪带外向地面垂直下降接触到突出外墙的物体时,应采取相应的防雷措施。
- 2 高于 60m 的建筑物,其上部占高度 20%并超过 60m 的部位应防侧击,防侧击应符合下列规定:
 - 1)在建筑物上部占高度 20%并超过 60m 的部位,各表面上的尖物、墙角、边缘、设备以及显著突出的物体,应按屋顶的保护措施处理。
 - 2)在建筑物上部占高度 20%并超过 60m 的部位,布置接闪器应符合对本类防雷建筑物的要求,接闪器应重点布置在墙角、边缘和显著突出的物体上。
 - 3)外部金属物,当其最小尺寸符合本规范第 5.2.7 条第 2 款的规定时,可利用其作为接闪器,还可利用布置在建筑 一物垂直边缘处的外部引下线作为接闪器。
 - 4)符合本规范第 4.4.5 条规定的钢筋混凝土内钢筋和符合 本规范第 5.3.5 条规定的建筑物金属框架,当其作为引 下线或与引下线连接时均可利用作为接闪器。
- 3 外墙内、外竖直敷设的金属管道及金属物的顶端和底端, 应与防雷装置等电位连接。
- 4.4.9 砖烟囱、钢筋混凝土烟囱,宜在烟囱上装设接闪杆或接闪

环保护。多支接闪杆应连接在闭合环上。

当非金属烟囱无法采用单支或双支接闪杆保护时,应在烟囱口装设环形接闪带,并应对称布置三支高出烟囱口不低于 0.5m 的接闪杆。

钢筋混凝土烟囱的钢筋应在其顶部和底部与引下线和贯通连接的金属爬梯相连。当符合本规范第 4.4.5 条的规定时,宜利用钢筋作为引下线和接地装置,可不另设专用引下线。

高度不超过 40m 的烟囱,可只设一根引下线,超过 40m 时应 设两根引下线。可利用螺栓或焊接连接的一座金属爬梯作为两根 引下线用。

金属烟囱应作为接闪器和引下线。

4.5 其他防雷措施

- 4.5.1 当一座防雷建筑物中兼有第一、二、三类防雷建筑物时,其 防雷分类和防雷措施宜符合下列规定:
- 1 当第一类防雷建筑物部分的面积占建筑物总面积的 30% 及以上时,该建筑物官确定为第一类防雷建筑物。
- 2 当第一类防雷建筑物部分的面积占建筑物总面积的 30% 以下,且第二类防雷建筑物部分的面积占建筑物总面积的 30% 及以上时,或当这两部分防雷建筑物的面积均小于建筑物总面积的 30%,但其面积之和又大于 30%时,该建筑物宜确定为第二类防雷建筑物。但对第一类防雷建筑物部分的防闪电感应和防闪电电涌侵入,应采取第一类防雷建筑物的保护措施。
- 3 当第一、二类防雷建筑物部分的面积之和小于建筑物总面积的 30%,且不可能遭直接雷击时,该建筑物可确定为第三类防雷建筑物;但对第一、二类防雷建筑物部分的防闪电感应和防闪电电涌侵入,应采取各自类别的保护措施;当可能遭直接雷击时,宜按各自类别采取防雷措施。
- 4.5.2 当一座建筑物中仅有·部分为第一、二、三类防雷建筑物

时,其防雷措施官符合下列规定:

- 1 当防雷建筑物部分可能遭直接雷击时,宜按各自类别采取 防雷措施。
- 2 当防雷建筑物部分不可能遭直接雷击时,可不采取防直击雷措施,可仅按各自类别采取防闪电感应和防闪电电涌侵人的措施。
- 3 当防雷建筑物部分的面积占建筑物总面积的 50%以上时,该建筑物宜按本规范第 4.5.1 条的规定采取防雷措施。
- 4.5.3 当采用接闪器保护建筑物、封闭气罐时,其外表面外的 2 区爆炸危险场所可不在滚球法确定的保护范围内。
- 4.5.4 固定在建筑物上的节日彩灯、航空障碍信号灯及其他用电设备和线路应根据建筑物的防雷类别采取相应的防止闪电电涌侵入的措施,并应符合下列规定:
- 1 无金属外壳或保护网罩的用电设备应处在接闪器的保护范围内。
- 2 从配电箱引出的配电线路应穿钢管。钢管的一端应与配电箱和 PE 线相连;另一端应与用电设备外壳、保护罩相连,并应就近与屋顶防雷装置相连。当钢管因连接设备而中间断开时应设跨接线。
- 3 在配电箱内应在开关的电源侧装设Ⅱ级试验的电涌保护器,其电压保护水平不应大于 2.5kV,标称放电电流值应根据具体情况确定。
- 4.5.5 粮、棉及易燃物大量集中的露天堆场,当其年预计雷击次数大于或等于 0.05 时,应采用独立接闪杆或架空接闪线防直击雷。独立接闪杆和架空接闪线保护范围的滚球半径可取 100m。

在计算需击次数时,建筑物的高度可按可能堆放的高度计算, 其长度和宽度可按可能堆放面积的长度和宽度计算。

- **4.5.6** 在建筑物引下线附近保护人身安全需采取的防接触电压和跨步电压的措施,应符合下列规定:
 - 1 防接触电压应符合下列规定之一:

- 2)引下线 3m 范围内地表层的电阻率不小于 50kΩm,或敷设 5cm 厚沥青层或 15cm 厚砾石层。
- 3)外露引下线,其距地面 2.7m 以下的导体用耐 1.2/50μs 冲击电压 100kV 的绝缘层隔离,或用至少 3mm 厚的交 联聚乙烯层隔离。
- 4) 川护栏、警告牌使接触引下线的可能性降至最低限度。
- 2 防跨步电压应符合下列规定之一:
 - 1)利用建筑物金属构架和建筑物互相连接的钢筋在电气上 是贯通且不少于 10 根柱子组成的自然引下线,作为自然 引下线的柱子包括位于建筑物四周和建筑物内的。
 - 2)引下线 3m 范围内地表层的电阻率不小于 50kΩm,或敷设 5cm 厚沥青层或 15cm 厚砾石层。
 - 3)用网状接地装置对地面做均衡电位处理。
 - 4)用护栏、警告牌使进入距引下线 3m 范围内地面的可能 性减小到最低限度。
- 4.5.7 对第二类和第三类防雷建筑物,应符合下列规定:
- 1 没有得到接闪器保护的屋顶孤立金属物的尺寸不超过下 列数值时,可不要求附加的保护措施:
 - 1)高出屋顶平面不超过 0.3m。
 - 2)上层表面总面积不超过 1.0m2。
 - 3)上层表面的长度不超过 2.0m。
- 2 不处在接闪器保护范围内的非导电性屋顶物体,当它没有 突出由接闪器形成的平面 0.5m 以上时,可不要求附加增设接闪 器的保护措施。
- 4.5.8 在独立接闪杆、架空接闪线、架空接闪网的支柱上,严禁悬挂电话线、广播线、电视接收天线及低压架空线等。

该文档是极速PDF编辑器生成,如果想去掉该提示,请访问并下载: http://www.jisupdfeditor.com/

5 防雷装置

5.1 防雷装置使用的材料

5.1.1 防雷装置使用的材料及其应用条件,宜符合表 5.1.1 的规定。

表 5.1.1 防雷装置的材料及使用条件

				ılı	讨腐蚀情况	
材料 使用于 大气中	使用于 地中	使用于 混凝土中	在下列环境中能耐腐蚀	在下列环境 中增加腐蚀	与下列材料 接触形成直流 电耦合可能 受到严重腐蚀	
铜	单根导体,绞线	单根导体, 有镀层的 绞线,铜管	单根导体, 有镀层的 绞线	在许多环境中 良好	硫化物 有机材料	Б
热镀 锌钢	单根导体,绞线	单根导体, 钢管	单根导体, 绞线	敷设于大气、混凝 土和无腐蚀性的一 般上壤中受到的 腐蚀是可接受的	高氯化物 含量	钊
电镀 铜钢	单根 导体	单根导体	单根导体	在许多环境中良好	硫化物	_
不锈 钢	单根导体,绞线	单根导体, 绞线	单根导体, 绞线	在许多环境中良好	高氯化物 含量	= =
铝	单根导体,绞线	不适合	不适合	在含有低浓度硫 和氯化物的 大气中良好	碱性溶液	铜
铅	存镀铅层 的单根 导体	禁止	不适合	在含有高浓度 硫酸化合物的 大气中良好	-	铜 不锈钢

- 注:1 敷设于黏土或潮湿土壤中的镀锌钢可能受到腐蚀;
 - 2 在沿海地区,敷设于混凝土中的镀锌钢不宜延伸进入土壤中,
 - 3 不得在地中采用铅。
- 5.1.2 防雷等电位连接各连接部件的最小截面,应符合表5.1.2 的规定。连接单台或多台 I 级分类试验或 D1 类电涌保护器的单

根导体的最小截面,尚应按下式计算:

 $S_{\min} \geqslant I_{imp}/8$

(5, 1, 2)

式中: S_{\min} 单根导体的最小截面 (mm^2) ;

I_{imp}——流入该导体的雷电流(kA)。

表 5.1.2 防雷装置各连接部件的最小截面

	4	等电位连接部件	材料	截面(mm²)
等电位连接带(铜、外表面镀铜的钢或热镀锌钢)			Cu(铜)、 Fe(铁)	50
			Cu(銅)	16
	열 제 이용된 것이다. 그래만	\(连接带至接地装置或 连接带之间的连接导体	Al(铝)	25
~	各等电位连接带之间的连接导体			50
	从屋内金属装置至等电位连接带的连接导体			6
从屋内				10
			Fe(铁)	16
•		I级试验的电流保护器		6
	电气 系统	Ⅱ级试验的电涌保护器		2.5
连接电涌 保护器	水 犯	Ⅲ级试验的电涌保护器	Cu(铜)	1.5
的导体		D1 类电涌保护器		• 1.2
	心子 系统	其他类的电涌保护器(连接 导体的截面可小于 1, 2mm²)		根据具体情况确定

5.2 接 闪 器

5.2.1 接闪器的材料、结构和最小截面应符合表 5.2.1 的规定。

表 5.2.1 接闪线(带)、接闪杆和引下线的材料、结构与最小截面

材料	结构	最小截面(mm²)	备注®
铜,镀锡铜①	单根扁铜	50	厚度 2mm
	单根圆铜♡	50	直径 8mm
	铜绞线	50	毎股线直径 1.7mm
	单根圆铜霉项	176	直径 15mm

续表 5.2.1

材料	结构	最小截面(mm ²)	备注◎
	单根扁铝	70	厚度 3mm
铝	单根圆铝	50	直径 8mm
	铝绞线	50	每股线直径 1.7mm
铝合	单根扁形导体	50	厚度 2.5mm
	单根圆形导体	50	直径 8mm
	绞线	50	每股线直径 1.7mm
金	单根圆形导体③	176	直径 15mm
	外表面镀铜的 单根圆形导体	50	直径 8mm, 径向镀铜 厚度至少 70μm, 铜纯度 99.9%
	单根扁钢	50	厚度 2.5mm
热浸镀锌	单根圆钢 [®]	50	直径 8mm
钢型	绞线	50	每股线直径 1.7mm
NI 3	单根圆钢(3、3)	176	直径 15mm
	单根扁钢®	50®	厚度 2mm
不锈	单根圆钢®	50®	直径 8mm
钢®	绞线	70	每股线直径 1.7mm
	单根圆钢③④	176	直径 15mm
小表面 雙銅的一	单根圆钢(直径 8mm)	50	镀铜厚度至少 70μm,
钢	单根扁钢(厚 2.5mm)		铜纯度 99.9%

- 注:(1) 热浸或电镀锡的锡层最小厚度为 1 µm;
 - ② 镀锌层宜光滑连贯、无焊剂斑点、镀锌层圆钢至少 22.7g/m²、扁钢至少 32.4g/m²;
 - ③ 仅应用于接闪杆。当应用于机械应力没达到临界值之处,可采用直径 10mm,最长 1m 的接闪杆,并增加固定;
 - ① 仅应用于入地之处;
 - ⑤ 不锈钢中,铬的含量等于或大于16%,镍的含量等于或大于8%,碳的含量等于或小于0.08%;
 - ⑥ 对理于混凝土中以及与可燃材料直接接触的不锈钢,其最小尺寸宜增大至直径 10mm 的 78mm²(单根圆钢)和最小厚度 3mm 的 75mm²(单根扁钢),
 - ⑦ 在机械强度没有重要要求之处,50mm²(直径 8mm)可减为 28mm²(直径 6mm)。并应减小固定支架间的问距;
 - ⑧ 当温升和机械受力是重点考虑之处,50mm2 加大至 75mm2;
 - 避免在单位能量 10MJ/Ω下熔化的最小截面是铜为 16mm²、铝为 25mm²、
 钢为 50mm²、不锈钢为 50mm²;
 - ⑩ 截面积允许误差为一3%。

- 5.2.2 接闪杆采用热镀锌圆钢或钢管制成时,其直径应行合下列^{被果果是}持续是。
- 1 杆长 1m 以下时,圆钢不应小于 12mm,钢管不应小于 20mm。
- 2 杆长 1m~2m 时,圆钢不应小于 16mm,钢管不应小于 25mm。
- 3 独立烟囱顶上的杆,圆钢不应小于 20mm,钢管不应小于 40mm。
- 5.2.3 接闪杆的接闪端宜做成半球状,其最小弯曲半径宜为4.8mm,最大宜为12.7mm。
- 5.2.4 当独立烟囱上采用热镀锌接闪环时,其圆钢直径不应小于 12mm;扁钢截面不应小于 100mm²,其厚度不应小于 4mm。
- 5.2.5 架空接闪线和接闪网宜采用截面不小于 50mm² 热镀锌钢 绞线或铜绞线。
- 5.2.6 明敷接闪导体固定支架的间距不宜大于表 5.2.6 的规定。固定支架的高度不宜小于 150mm。

布置方式	扁形导体和绞线固定 支架的间距(mm)	单根圆形导体固定 支架的间距(mm)	
安装于水平面上的水平导体	500	1000	
安装于垂直面上的水平导体	500	1000	
安装于从地面至高 20m 垂直面上的垂直导体	1000	1000	
安装在高于 20m 垂直面上 的垂直导体	500	1000	

表 5.2.6 明敷接闪导体和引下线固定支架的间距

- 5.2.7 除第一类防雷建筑物外,金属屋面的建筑物宜利用其屋面 作为接闪器,并应符合下列规定:
- 1 板间的连接应是持久的电气贯通,可采用铜锌合金焊、熔焊、卷边压接、缝接、螺钉或螺栓连接。
 - 2 金属板下面无易燃物品时,铅板的厚度不应小于 2mm,不

锈钢、热镀锌钢、钛和铜板的厚度不应小于 0.5mm,铝板的厚度不应小于 0.65mm,锌板的厚度不应小于 0.7mm。

- 3 金属板下面有易燃物品时,不锈钢、热镀锌钢和钛板的厚度不应小于 4mm,铜板的厚度不应小于 5mm,铝板的厚度不应小于 7mm。
 - 4 金属板应无绝缘被覆层。

- 5.2.8 除第一类防雷建筑物和本规范第 4.3.2 条第 1 款的规定外,屋顶上永久性金属物宜作为接闪器,但其各部件之间均应连成电气贯通,并应符合下列规定:
- 1 旗杆、栏杆、装饰物、女儿墙上的盖板等,其截面应符合本规范表 5.2.1 的规定,其壁厚应符合本规范第 5.2.7 条的规定。
- 2 输送和储存物体的钢管和钢罐的壁厚不应小于 2.5mm; 当钢管、钢罐一旦被雷击穿,其内的介质对周围环境造成危险时, 其壁厚不应小于 4mm。
- 3 利用屋顶建筑构件内钢筋作接闪器应符合本规范第 4.3.5条和第4.4.5条的规定。
- 5.2.9 除利用混凝土构件钢筋或在混凝土内专设钢材作接闪器外,钢质接闪器应热镀锌。在腐蚀性较强的场所,尚应采取加大截面或其他防腐措施。
- 5.2.10 不得利用安装在接收无线电视广播天线杆顶上的接闪器 保护建筑物。
- 5.2.11 专门敷设的接闪器应由下列的一种或多种方式组成:
 - 1 独立接闪杆。
 - 2 架空接闪线或架空接闪网。
 - 3 直接装设在建筑物上的接闪杆、接闪带或接闪网。
- 5.2.12 专门敷设的接闪器,其布置应符合表 5.2.12 的规定。布

该文档是极速PDF编辑器生成,如果想去掉该提示;请访问并下载: http://www.jisupdfeditor.com/

置接闪器时,可单独或任意组合采用接闪杆、接闪带、接闪网。

表 5.2.12 接闪器布置

建筑物防雷类别	滚球半径 h,(m)	接闪网网格尺寸(m)
第一类防雷建筑物	30	≤5×5 或≤6×4
第二类防雷建筑物	45	≤10×10 或≤12×8
第三类防雷建筑物	60	≤20×20 或≤24×16

5.3 引 下 线

- **5.3.1** 引下线的材料、结构和最小截面应按本规范表 5.2.1 的规定取值。
- **5.3.2** 明敷引下线固定支架的间距不宜大于本规范表 5.2.6 的规定。
- 5.3.3 引下线宜采用热镀锌圆钢或扁钢,宜优先采用圆钢。

当独立烟囱上的引下线采用圆钢时,其直径不应小于 12mm; 采用扁钢时,其截面不应小于 100mm²,厚度不应小于 4mm。

防腐措施应符合本规范第 5.2.9 条的规定。

利用建筑构件内钢筋作引下线应符合本规范第 4.3.5 条和 第 4.4.5条的规定。

- 5.3.4 专设引下线应沿建筑物外墙外表面明敷,并应经最短路径接地;建筑外观要求较高时可暗敷,但其圆钢直径不应小于10mm,扁钢截面不应小于80mm²。
- 5.3.5 建筑物的钢梁、钢柱、消防梯等金属构件,以及幕墙的金属立柱宜作为引下线,但其各部件之间均应连成电气贯通,可采用铜锌合金焊、熔焊、卷边压接、缝接、螺钉或螺栓连接;其截面应按本规范表 5.2.1 的规定取值;各金属构件可覆有绝缘材料。
- 5.3.6 采用多根专设引下线时,应在各引下线上距地面 0.3m~1.8m 处装设断接卡。

当利用混凝土内钢筋、钢柱作为自然引下线并同时采用基础接地体时,可不设断接卡,但利用钢筋作引下线时应在室内外的适

当地点设若干连接板。当仅利用钢筋作引下线并采用是了上壤中的人工接地体时,应在每根引下线上距地面不低于 0.3m 处设接地体连接板。采用埋于土壤中的人工接地体时应设断接卡,其上端应与连接板或钢柱焊接。连接板处宜有明显标志。

- 5.3.7 在易受机械损伤之处, 地面上 1.7m 至地面下 0.3m 的一段接地线, 应采用暗敷或采用镀锌角钢、改性塑料管或橡胶管等加以保护。
- 5.3.8 第二类防雷建筑物或第三类防雷建筑物为钢结构或钢筋混凝土建筑物时,在其钢构件或钢筋之间的连接满足本规范规定并利用其作为引下线的条件下,当其垂直支柱均起到引下线的作用时,可不要求满足专设引下线之间的间距。

5.4 接地装置

5.4.1 接地体的材料、结构和最小尺寸应符合表 5.4.1 的规定。 利用建筑构件内钢筋作接地装置应符合本规范第 4.3.5 条和第 4.4.5条的规定。

表 5.4.1 接地体的材料、结构和最小	取小八寸
----------------------	------

		最小尺寸			
材料	结构	垂直接地 体直径 (mm)	水平 接地体 (mm²)	接地板 (mm)	备 注
御、舞場	铜绞线	-	50		每股直径 1.7mm
	单根圆铜	15	50	==	
	单根扁铜	= 3	50	=-	厚度 2mm
	铜管	20		7228	壁厚 2mm
锏	整块铜板			500×500	厚度 2mm
	网格铜板			600×600	各网格边截面 25mm× 2mm,网格网边总 长度不少于 4.8m

续表 5.4.1

			最小尺寸		
材料	结构	垂直接地 体直径 (mm)	水平 接地体 (mm²)	接地板 (mm)	备注
	圆钢	14	78		
	钢管	20	/		壁厚 2mm
	扁锹		90	_	厚度 3mm
热镀 学钢	钢板	=	3_9	500×500	厚度 3mm
FF 183	网格钢板	_	b=	600×600	各网格边截面 30mm× 3mm, 网格网边总 长度不少于 4.8m
	型钢	注 3	ir an	-	<u> </u>
	钢绞线		70		每股直径 1,7mm
裸钢	圆钢		78		_
	扁钢		75	XZ	厚度 3mm
外表	圆钢	14	50		镀铜厚度至少 250μm,
面镀 铜的 钢	扁钢		90 (厚 3mm)	=	級 刷 序 及 至 ジ 230 μ m , 铜 纯 度 99.9%
r: he hu	圆形导体	15	78	-	-
下锈钢—	扁形导体	11/	100	_	厚度 2mm

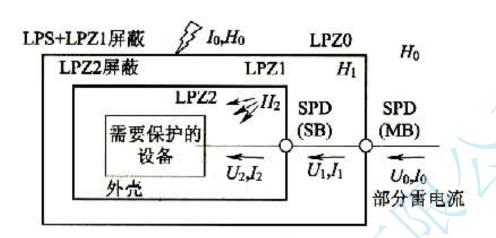
- 注:1 热镀锌钢的镀锌层应光滑连贯、无焊剂斑点,镀锌层圆钢至少 22.7g/m², 扁钢至少 32.4g/m²,
 - 2 热镀锌之前螺纹应先加工好;
 - 3 不同截面的型钢,其截面不小于 290mm²,最小厚度 3mm,可采用 50mm× 50mm×3mm 角钢;
 - 4 当完全埋在混凝土中时才可采用裸钢;
 - 5 外表面镀铜的钢,铜应与钢结合良好;
 - 6 不锈钢中, 铬的含量等于或大于 16%, 镍的含量等于或大于 5%, 钼的含量 等于或大于 2%, 碳的含量等于或小于 0.08%;
 - 7 截面积允许误差为一3%。
- 5.4.2 在符合本规范表 5.1.1 规定的条件下,埋于土壤中的人工

垂直接地体宜采用热镀锌角钢、钢管或圆钢;埋于土壤中的人工水平接地体宜采用热镀锌扁钢或圆钢。

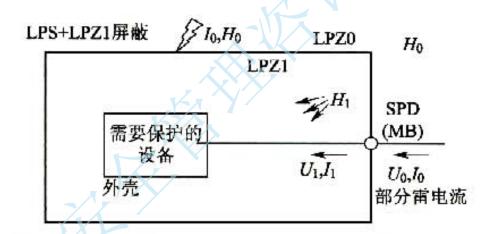
接地线应与水平接地体的截面相同。

- 5.4.3 人工钢质垂直接地体的长度宜为 2.5 m。其间距以及人工水平接地体的间距均宜为 5 m, 当受地方限制时可适当减小。
- 5.4.4 人工接地体在土壤中的埋设深度不应小于 0.5m,并宜敷设在当地冻土层以下,其距墙或基础不宜小于 1m。接地体宜远离由于烧窑、烟道等高温影响使土壤电阻率升高的地方。
- 5.4.5 在敷设于土壤中的接地体连接到混凝土基础内起基础接地体作用的钢筋或钢材的情况下,上壤中的接地体宜采用铜质或镀铜或不锈钢导体。
- 5.4.6 在高上壤电阻率的场地,降低防立击雷冲击接地电阻宜采用下列方法:
- 1 采用多支线外引接地装置,外引长度不应大于有效长度,有效长度应符合本规范附录 C 的规定。
 - 2 接地体埋于较深的低电阻率土壤中。
 - 3 换土。
 - 4 采用降阻剂。
- 5.4.7 防直击雷的专设引下线距出入口或人行道边沿不宜小于 3m。
- 5.4.8 接地装置埋在土壤中的部分,其连接宜采用放热焊接;当 采用通常的焊接方法时,应在焊接处做防腐处理。
- 5.4.9 接地装置工频接地电阻的计算应符合现行国家标准《工业与民用电力装置的接地设计规范》GBJ 65 的有关规定,其与冲击接地电阻的换算应符合本规范附录 C 的规定。

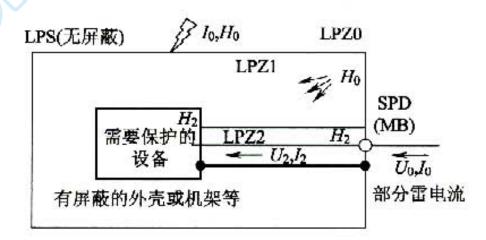
6 防雷击电磁脉冲


6.1 基本规定

- 6.1.1 在工程的设计阶段不知道电子系统的规模和具体位置的情况下,若预计将来会有需要防雷击电磁脉冲的电气和电子系统,应在设计时将建筑物的金属支撑物、金属框架或钢筋混凝土的钢筋等自然构件、金属管道、配电的保护接地系统等与防雷装置组成一个接地系统,并应在需要之处预埋等电位连接板。
- 6.1.2 当电源采用 TN 系统时,从建筑物总配电箱起供电给本建筑物内的配电线路和分支线路必须采用 TN-S 系统。


6.2 防雷区和防雷击电磁脉冲

- 6.2.1 防雷区的划分应符合下列规定:
- 1 本区内的各物体都可能遭到直接雷击并导走全部雷电流, 以及本区内的雷击电磁场强度没有衰减时,应划分为 LPZO_A 区。
- 2 本区内的各物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,以及本区内的雷击电磁场强度仍没有衰减时,应划分为 LPZO_B 区。
- 3 本区内的各物体不可能遭到直接雷击,且由于在界面处的分流,流经各导体的电涌电流比 LPZO_B 区内的更小,以及本区内的雷击电磁场强度可能衰减,衰减程度取决于屏蔽措施时,应划分为 LPZ1 区。
- 4 需要进一步减小流入的电涌电流和雷击电磁场强度时,增设的后续防雷区应划分为 LPZ2…n 后续防雷区。
- 6.2.2 安装磁场屏蔽后续防雷区、安装协调配合好的多组电涌保护器,宜按需要保护的设备的数量、类型和耐压水平及其所要求的



(a) 采用大空间屏蔽和协调配合好的电涌保护器保护注:设备得到良好的防导入电涌的保护, U_2 大大小于 U_0 和 I_2 大大小于 I_0 ,以及 H_2 大大小于 H_0 防辐射磁场的保护。



(b)采用LPZ1的大空间屏蔽和进户处安装电涌保护器的保护 注:设备得到防导入电涌的保护、U₁小于U₀和I₁小于I₀,以及 H₁小于H₀防辐射磁场的保护。

(c)采用内部线路屏蔽和在进入LPZ1处安装电涌保护器的保护注:设备得到防线路导入电涌的保护, U_2 小于 U_0 和 I_2 小于 I_0 ,以及 I_1 小于 I_1 防辐射磁场的保护。

(d)仅采用协调配合好的电涌保护器保护 注:设备得到防线路导入电涌的保护, U_2 大大小于 U_0 和 I_2 大大小于 I_0 。 但不需防 I_0 辐射磁场的保护。

图 6.2.2 防雷击电磁脉冲 MB-总配电箱;SB-分配电箱;SA-插座

6.2.3 在两个防雷区的界面上宜将所有通过界面的金属物做等电位连接。当线路能承受所发生的电涌电压时,电涌保护器可安装在被保护设备处,而线路的金属保护层或屏蔽层宜首先于界面处做一次等电位连接。

注:LPZ0A 与 LPZ0B 区之间无实物界面。

6.3 屏蔽、接地和等电位连接的要求

- 6.3.1 屏蔽、接地和等电位连接的要求官联合采取下列措施:
- 2 在需要保护的空间内,采用屏蔽电缆时其屏蔽层应至少在两端,并宜在防雷区交界处做等电位连接,系统要求只在一端做等电位连接时,应采用两层屏蔽或穿钢管敷设,外层屏蔽或钢管应至少在两端,并宜在防雷区交界处做等电位连接。
- 3 分开的建筑物之间的连接线路,若无屏蔽层,线路应敷设在金属管、金属格栅或钢筋成格栅形的混凝土管道内。金属管、金

属格栅或钢筋格栅从一端到另一端应是导电贯通,并是在两端分别 别连到建筑物的等电位连接带上;若有屏蔽层,屏蔽层的两端应连 到建筑物的等电位连接带上。

- 4 对由金属物、金属框架或钢筋混凝土钢筋等自然构件构成 建筑物或房间的格栅形大空间屏蔽,应将穿入大空间屏蔽的导电 金属物就近与其做等电位连接。
- 6.3.2 对屏蔽效率未做试验和理论研究时,磁场强度的衰减应按 下列方法计算:
- 1 闪电击于建筑物以外附近时,磁场强度应按下列方法计算:
 - 1) 当建筑物和房间无屏蔽时所产生的无衰减磁场强度,相 当于处于 LPZO_A 和 LPZO_B 区内的磁场强度,应按下式 计算:

$$H_0 = i_0 / (2\pi s_a) \tag{6.3.2-1}$$

式中: II。——无屏蔽时产生的无衰减磁场强度(A/m);

i₀—最大雷电流(A),按本规范表 F. 0. 1 1、表 F. 0. 1-2 和表 F. 0. 1-3 的规定取值;

s_a——雷击点与屏蔽空间之间的平均距离(m)(图 6.3.2-1), 按式(6,3.2-6)或式(6.3.2-7)计算。

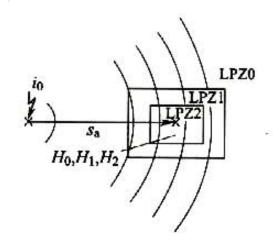


图 6.3.2-1 附近雷击时的环境情况

2) 当建筑物或房间有屏蔽时,在格栅形大空间屏蔽内,即在

LPZ1 区内的磁场强度,应按下式计算:

(6.3, 2-2)

 $H_1 = H_0 / 10^{SF/20}$

式中: H_1 ——格栅形大空间屏蔽内的磁场强度(Λ/m); SF------ 屏蔽系数(dB),按表 6.3.2-1 的公式计算。

表 6.3.2-1 格栅形大空间屏蔽的屏蔽系数

	SF	(dB)
材料	$25 \mathrm{kHz}^{\oplus}$	1MHz [©] 或 250kHz
铜/铝	$20 \times \log(8.5/w)$	20×log(8, 5/w)
钢 ③	$\frac{20 \times \log}{\left[(8.5/w) / \sqrt{1 + 18 \times 10^{-6}/r^2} \right]}$	20×log(8, 5/w)

注:(1) 适用于首次雷击的磁场;

- ② 1MHz 适用于后续雷击的磁场,250kHz 适用于首次负级性雷击的磁场;
- ③ 相对磁导系数 μ.≈200;
- 1 w 为格栅形屏蔽的网格宽(m);r 为格栅形屏蔽网格导体的半径(m);
- 2 当计算式得出的值为负数时取 SF-0; 若建筑物具有网格形等电位连接网 络,SF可增加 6dB。
- 2 表 6.3.2-1 的计算值应仅对在各 LPZ 区内距屏蔽层有一 安全距离的安全空间内才有效(图 6.3.2-2),安全距离应按下列 公式计算:

当 SF≥10 时:

$$d_{s/1} = w^{SF/10} \tag{6.3.2-3}$$

当 SF<10 时:

$$d_{e/1} = w \tag{6.3.2-4}$$

式中: $d_{s/1}$ ——安全距离(m);

w--格棚形屏蔽的网格宽(m);

SF---按表 6.3.2-1 计算的屏蔽系数(dB)。

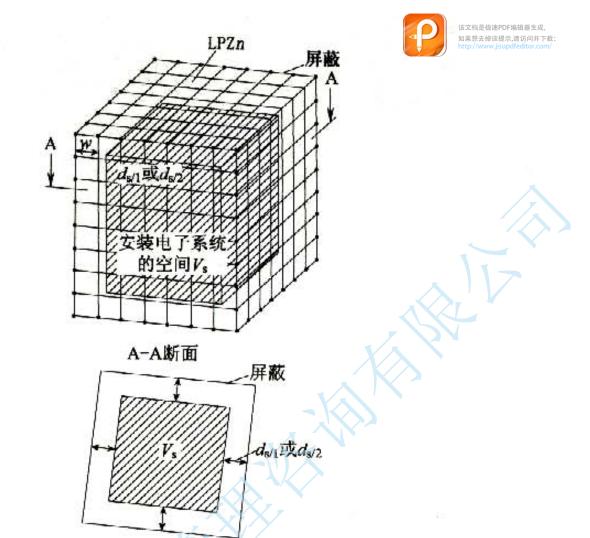


图 6.3.2-2 在 LPZn 区内供安放电气和电子系统的空间 注:空间 V。为安全空间。

3 在闪电击在建筑物附近磁场强度最大的最坏情况下,按建筑物的防雷类别、高度、宽度或长度可确定可能的雷击点与屏蔽空间之间平均距离的最小值(图 6.3.2-3),可按下列方法确定:

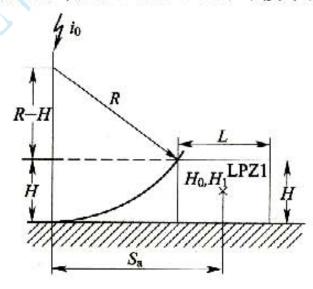


图 6.3.2-3 取决于滚球半径和建筑物尺寸的最小平均距离

1)对应三类防雷建筑物最大雷电流的滚球半径应符合表 6.3.2-2的规定。滚球半径可按下式计算:

$$R = 10(i_0)^{0.65} (6.3.2-5)$$

式中: R---滚球半径(m);

i₀——最大雷电流(kA),按本规范表 F. 0. 1-1、表 F. 0. 1 2 或表 F. 0. 1-3 的规定取值。

表 6.3.2-2 与最大雷电流对应的滚球半径

防雷	最大雷电流 i₀(kA)			对应的滚球半径 R(m)		
建筑物类别	正极性 首次雷击	负极性 首次雷击	负极性 后续雷击	正极性 首次雷击	负极性 首次雷击	负极性 后续雷击
第一类	200	100	50	313	200	127
第二类	150	75	37.5	260	165	105
第三类	100	50	25	200	127	81

2) 雷击点与屏蔽空间之间的最小平均距离,应按下列公式 计算:

当 H<R 时:

$$s_a = \sqrt{H(2R - H)} + L/2$$
 (6.3.2-6)

当 H≥R 时:

$$s_a = R + L/2$$
 (6.3.2-7)

式中: H-建筑物高度(m);

L—建筑物长度(m)。

根据具体情况建筑物长度可用宽度代人。对所取最小平均距离小于式(6.3.26)或式(6.3.2-4)计算值的情况,闪电将直接击在建筑物上。

4 在闪电直接击在位于 LPZO_A 区的格栅形大空间屏蔽或与 其连接的接闪器上的情况下,其内部 LPZ1 区内安全空间内某点 的磁场强度应按下式计算(图 6.3.2-4);

$$H_1 = k_H \cdot i_0 \cdot w / (d_w \cdot \sqrt{d_r})$$
 (6.3.2-8)

式中: H_1 一安全空间内某点的磁场强度(A/m);

d, 所确定的点距 LPZ1 区屏蔽顶的最短距离(m);

d_w 所确定的点距 LPZ1 区屏蔽壁的最短距离(m);

 $k_{\rm H}$ — 形状系数 $(1/\sqrt{m})$,取 $k_{\rm H}=0.01(1/\sqrt{m})$;

w--LPZ1 区格栅形屏蔽的网格宽(m)。

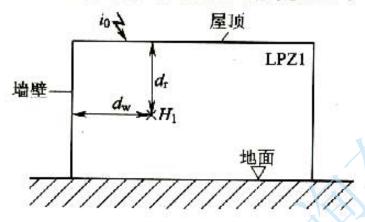


图 6.3.2-4 闪电直接击于屋顶接闪器时 LPZ1 区内的磁场强度

5 式(6.3.2-8)的计算值仅对距屏蔽格栅有一安全距离的安全空间内有效,安全距离应按下列公式计算,电子系统应仅安装在安全空间内:

当 SF≥10 时:

$$d_{s/2} = w \cdot SF/10 \tag{6.3.2-9}$$

当 SF<10 时:

$$d_{s/2} - w$$
 (6.3.2-10)

式中: d_{s/2}—安全距离(m)。

6 LPZn+1 区内的磁场强度可按下式计算:

$$H_{n+1} = H_n / 10^{SF/20} \tag{6.3.2-11}$$

式中: H_n ——LPZn 区内的磁场强度(A/m);

 H_{n+1} ——LPZn+1 区内的磁场强度(Λ/m);

SF — LPZn+1 区屏蔽的屏蔽系数。

安全距离应按式(6.3.2-3)或式(6.3.2-4)计算。

7 当式(6.3.2-11)中的 LPZn 区内的磁场强度为 LPZ1 区内的磁场强度时,LPZ1 区内的磁场强度应按以下方法确定:

- 2) 闪电直接击在 LPZ1 区大空间屏蔽上的情况,应按本条第 4 款式(6.3.28)确定,但式中所确定的点距 LPZ1 区屏蔽顶的最短距离和距 LPZ1 区屏蔽壁的最短距离应按图 6.3.2-5 确定。

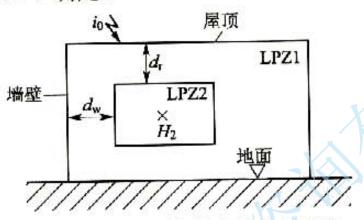
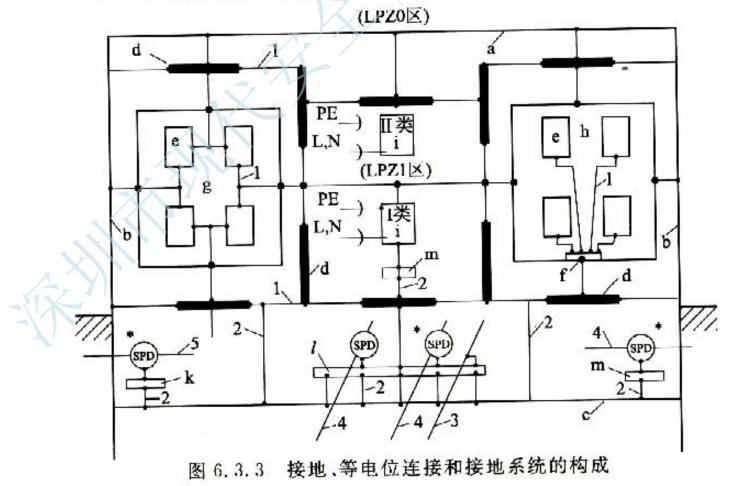



图 6.3.2-5 LPZ2 区内的磁场强度

- 6.3.3 接地和等电位连接除应符合本规范的有关规定外,尚应符合下列规定:
 - 1 每幢建筑物本身应采用一个接地系统(图 6.3.3)。

该文档是极速PDF编辑器生成, 如果想去掉该提示,请访问并下载: http://www.jisupdfeditor.com/

a—防雷装置的接闪器及可能是建筑物空间屏蔽的一部分; b—防雷装置的引下线及可能是建筑物空间屏蔽的一部分;

c 防雷装置的接地装置(接地体网络、共用接地体网络) 以及可能是建筑物空间屏蔽的一部分,如基础内钢筋和基础接地体; d一内部导电物体,在建筑物内及其上不包括电气装置的金属装置,

如电梯轨道,起重机,金属地面,金属门框架、 各种服务性设施的金属管道,金属电缆桥架,地面、墙和天花板的钢筋;

的金属官項,金属电现价架,地间、墙和人花板的钢道 e 局部电子系统的金属组件:

f 代表局部等电位连接带单点连接的接地基准点(ERP);

g-局部电子系统的网形等电位连接结构;

h 局部电子系统的星形等电位连接结构;

i一固定安装有 PE 线的 I 类设备和无 PE 线的 Ⅱ 类设备;

k一主要供电气系统等电位连接用的总接地带、总接地母线、

总等电位连接带。也可用作共用等电位连接带,

主要供电子系统等电位连接用的环形等电位连接带、水平等电位连接导体, 在特定情况下采用金属板。也可用作共用等电位连接带。 用接地线多次接到接地系统上做等电位连接,官每隔 5m 连一次;

m-局部等电位连接带;

1一等电位连接导体;2一接地线;3一服务性设施的金属管道;

- 4 电子系统的线路或电缆;5一电气系统的线路或电缆,
 - *一进入 LPZ1 区处,用于管道、电气和电子系统的 线路或电缆等外来服务性设施的等电位连接。
- 2 当互相邻近的建筑物之间有电气和电子系统的线路连通时,宜将其接地装置互相连接,可通过接地线、PE线、屏蔽层、穿线钢管、电缆沟的钢筋、金属管道等连接。
- 6.3.4 穿过各防雷区界面的金属物和建筑物内系统,以及在一个 防雷区内部的金属物和建筑物内系统,均应在界面处附近做符合 下列要求的等电位连接:
- 1 所有进入建筑物的外来导电物均应在 LPZO_A 或 LPZO_B 与 LPZ1 区的界面处做等电位连接。当外来导电物、电气和电子系统的线路在不同地点进入建筑物时,宜设若干等电位连接带,并应将其就近连到环形接地体、内部环形导体或在电气上贯通并连通到接地体或基础接地体的钢筋上。环形接地体和内部环形导体应连到钢筋或金属立面等其他屏蔽构件上,宜每隔 5m 连接一次。

对各类防雷建筑物,各种连接导体和等电位连接带的截面不应小于本规范表 5.1.2 的规定。

当建筑物内有电子系统时,在已确定雷击电磁脉冲影响最小之处,等电位连接带宜采用金属板,并应与钢筋或其他屏蔽构件做 多点连接。

2 在 LPZO_A 与 LPZ1 区的界面处做等电位连接用的接线夹和电涌保护器,应采用本规范表 F. O. 1-1 的雷电流参量估算通过的分流值。当无法估算时,可按本规范式(4. 2. 4-6)或式(4. 2. 4-7)计算,计算中的雷电流应采用本规范表 F. O. 1-1 的雷电流。尚应确定沿各种设施引入建筑物的雷电流。应采用向外分流或向内引入的雷电流的较大者。

在靠近地面于 LPZ0_B 与 LPZ1 区的界面处做等电位连接用的接线夹和电涌保护器,仅应确定闪电击中建筑物防雷装置时通过的雷电流;可不计及沿全长处在 LPZ0_B 区的各种设施引入建筑物的雷电流,其值应仅为感应电流和小部分雷电流。

3 各后续防雷区界面处的等电位连接也应采用本条第 1 款的规定。

穿过防雷区界面的所有导电物、电气和电子系统的线路均应在 界面处做等电位连接。宜采用一局部等电位连接带做等电位连接,各种 屏蔽结构或设备外壳等其他局部金属物也连到局部等电位连接带。

用于等电位连接的接线夹和电涌保护器应分别估算通过的雷电流。

- 4 所有电梯轨道、起重机、金属地板、金属门框架、设施管道、 电缆桥架等大尺寸的内部导电物,其等电位连接应以最短路径连 到最近的等电位连接带或其他已做了等电位连接的金属物或等电 位连接网络,各导电物之间宜附加多次互相连接。
- 5 电子系统的所有外露导电物应与建筑物的等电位连接网络做功能性等电位连接。电子系统不应设独立的接地装置。向电子系统供电的配电箱的保护地线(PE线)应就近与建筑物的等电位连接网络做等电位连接。
- 一个电子系统的各种箱体、壳体、机架等金属组件与建筑物接 地系统的等电位连接网络做功能性等电位连接,应采用 S 型星形

结构或 M 型网形结构(图 6.3.4)。

当采用 S 型等电位连接时,电子系统的所有金属组件应与接地系统的各组件绝缘。

6 当电子系统为 300kHz 以下的模拟线路时,可采用 S 型等电位连接,且所有设施管线和电缆宜从 ERP 处附近进入该电子系统。

S型等电位连接应仅通过唯一的 ERP点,形成 S,型连接方式(图 6.3.4)。设备之间的所有线路和电缆当无屏蔽时,宜与成星形连接的等电位连接线平行敷设。用于限制从线路传导来的过电压的电涌保护器,其引线的连接点应使加到被保护设备上的电涌电压最小。

形式	S型星形结构	M型网形结构	
基本的 结构形式			
功能性等电位 接入 等心位连接网络	Ss.	M _m	

—— 等电位连接网络

等电位连接导体

设备

接至等电位连接网络的等电位连接点

ERP 接地基准点

S。 将星形结构通过ERP点整合到等电位连接网络中

M_m 将网形结构通过网形连接整合到等山位连接网络中

图 6.3.4 电子系统功能性等电位连接整合到等电位连接网络中

7 当电子系统为兆赫兹级数字线路时,应采用 型等电位连接,系统的各金属组件不应与接地系统各组件绝缘。M型等电位连接应通过多点连接组合到等电位连接网络中去,形成 Mm型连接方式。每台设备的等电位连接线的长度不宜大于 0.5 m,并宜设两根等电位连接线安装于设备的对角处,其长度相差宜为20%。

6.4 安装和选择电涌保护器的要求

- 6.4.1 复杂的电气和电子系统中,除在户外线路进入建筑物处, LPZO_A或 LPZO_B进入 LPZ1 区,按本规范第 4 章要求安装电涌保护器外,在其后的配电和信号线路上应按本规范第 6.4.4~6.4.8 条确定是否选择和安装与其协调配合好的电涌保护器。
- 6.4.2 两栋定为 LPZ1 区的独立建筑物用电气线路或信号线路的屏蔽电缆或穿钢管的无屏蔽线路连接时,屏蔽层流过的分雷电流在其上所产生的电压降不应对线路和所接设备引起绝缘击穿,同时屏蔽层的截面应满足通流能力(图 6.4.2)。计算方法应符合本规范附录 H 的规定。

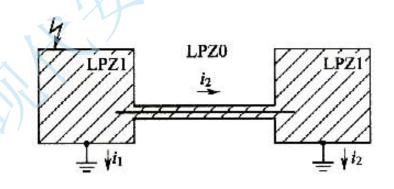


图 6.4.2 用屏蔽电缆或穿钢管线路将两栋 独立的 LPZ1 区连接在一起

6.4.3 LPZ1区内两个LPZ2区之间用电气线路或信号线路的屏蔽电缆或屏蔽的电缆沟或穿钢管屏蔽的线路连接在一起,当有屏蔽的线路没有引出LPZ2区时,线路的两端可不安装电涌保护器(图 6.4.3)。

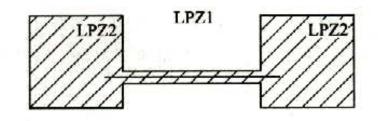


图 6.4.3 用屏蔽的线路将两个 LPZ2 区连接在一起

6.4.4 需要保护的线路和设备的耐冲击电压,220/380V 三相配电线路可按表 6.4.4 的规定取值;其他线路和设备,包括电压和电流的抗扰度,宜按制造商提供的材料确定。

表 6.4.4 建筑物内 220/380V 配电系统中设备绝缘 耐冲击电压额定值

设备位置	电源处的 设备	配电线路和最后 分支线路的设备	用电设备	特殊需要 保护的设备
耐冲击电压类别	IV类	Ⅲ类	Ⅱ类	I类
耐冲击电压额定值 <i>U</i> w(kV)	6	4	2.5	1.5

- - 2 Ⅱ类——如家用电器和类似负荷;
 - 3 Ⅲ类──如配电盘,断路器,包括线路、母线、分线盒、开关、插座等固定装置的布线系统,以及应用于工业的设备和永久接至固定装置的固定安装的电动机等的一些其他设备。
 - 4 Ⅳ类──如电气计量仪表、一次线过流保护设备、滤波器。
- 6.4.5 电涌保护器安装位置和放电电流的选择,应符合下列规定:
- 1 户外线路进入建筑物处,即 LPZO_A 或 LPZO_B 进入 LPZ1 区,所安装的电涌保护器应按本规范第 4 章的规定确定。
- 2 靠近需要保护的设备处,即 LPZ2 区和更高区的界面处, 当需要安装电涌保护器时,对电气系统宜选用Ⅱ级或Ⅲ级试验的 电涌保护器,对电子系统宜按具体情况确定,并应符合本规范附录 J的规定,技术参数应按制造商提供的、在能量上与本条第1款所 确定的配合好的电涌保护器选用,并应包含多组电涌保护器之间 的最小距离要求。

- 6.4.6 电涌保护器的有效电压保护水平,应符合下列规定:
 - 1 对限压型电涌保护器:

$$U_{p/1} = U_p + \Delta U \tag{6.4.6-1}$$

2 对电压开关型电涌保护器,应取下列公式中的较大者:

$$U_{p/i} = U_p \otimes U_{p/i} = \Delta U$$
 (6.4.6-2)

式中: $U_{\rm n/l}$ 电涌保护器的有效电压保护水平(kV);

 U_{o} 电涌保护器的电压保护水平(kV);

- ΔU —电涌保护器两端引线的感应电压降,即 $L \times (di/dt)$,户外线路进入建筑物处可按 1kV/m 计算,在其后的可按 $\Delta U = 0.2U_p$ 计算,仅是感应电涌时可略去不计。
- 3 为取得较小的电涌保护器有效电压保护水平,应选用有较小电压保护水平值的电涌保护器,并应采用合理的接线,同时应缩短连接电涌保护器的导体长度。
- 6.4.7 确定从户外沿线路引入雷击电涌时,电涌保护器的有效电压保护水平值的选取应符合下列规定:
- 1 当被保护设备距电涌保护器的距离沿线路的长度小于或等于 5m 时,或在线路有屏蔽并两端等电位连接下沿线路的长度小于或等于 10m 时,应按下式计算:

$$U_{p/f} \leqslant U_{\mathbf{w}} \tag{6.4.7-1}$$

式中: U, ——被保护设备的设备绝缘耐冲击电压额定值(kV)。

2 当被保护设备距电涌保护器的距离沿线路的长度大于 10m 时,应按下式计算;

$$U_{p/f} \leqslant \frac{U_{w} - U_{i}}{2}$$
 (6.4.7-2)

- 式中: U_i——雷击建筑物附近,电涌保护器与被保护 路环路的感应过电压(kV),按本规范第 6.3.2 条和 附录 G 计算。
- 3 对本条第2款,当建筑物或房间有空间屏蔽和线路有屏蔽 或仅线路有屏蔽并两端等电位连接时,可不计及电涌保护器与被 保护设备之间电路环路的感应过电压,但应按下式计算:

$$U_{\text{p/f}} \leqslant \frac{U_{\text{w}}}{2} \tag{6.4.7-3}$$

- 4 当被保护的电子设备或系统要求按现行国家标准《电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验》GB/T 17626.5 确定的冲击电涌电压小于 U_w 时,式(6.4.7-1)~式(6.4.7-3)中的 U_w 应用前者代人。
- 6.4.8 用于电气系统的电涌保护器的最大持续运行电压值和接 线形式,以及用于电子系统的电涌保护器的最大持续运行电压值, 应按本规范附录 J 的规定采用。连接电涌保护器的导体截面应按 本规范表 5.1.2 的规定取值。

该文档是极速PDF编辑器生成,如果想去掉该提示;请访问并下载 http://www.jisupdfeditor.com/

附录 A 建筑物年预计雷击次数

A.0.1 建筑物年预计雷击次数应按下式计算:

$$N = k \times N_{\rm g} \times A_{\rm e} \tag{A. 0.1}$$

式中:N——建筑物年顶计雷击次数(次/a);

k——校正系数,在一般情况下取1;位于河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑物,以及特别潮湿的建筑物取1.5;金属屋面没有接地的砖木结构建筑物取1.7;位于山顶上或旷野的孤立建筑物取2;

 N_s —建筑物所处地区雷击大地的年平均密度(次/km²/a);

A。——与建筑物截收相同雷击次数的等效面积(km²)。

A.0.2 雷击大地的年平均密度,首先应按当地气象台、站资料确定;若无此资料,可按下式计算.

$$N_{\rm g} = 0.1 \times T_{\rm d}$$
 (A. 0. 2)

式中: T_a——年平均雷暴日,根据当地气象台、站资料确定(d/a)。 A. 0.3 与建筑物截收相同雷击次数的等效面积应为其实际平面 积向外扩大后的面积。其计算方法应符合下列规定:

1 当建筑物的高度小于 100m 时,其每边的扩大宽度和等效面积应按下列公式计算(图 A. 0. 3):

$$D = \sqrt{H(200 - H)}$$
 (A. 0. 3-1)

$$A_{e} = \left[LW + 2(L + W)\sqrt{H(200 - H)} + \pi H(200 - H)\right] \times 10^{-6}$$
(A. 0. 3-2)

式中: D---建筑物每边的扩大宽度(m);

L,W,H——分別为建筑物的长、宽、高(m)。

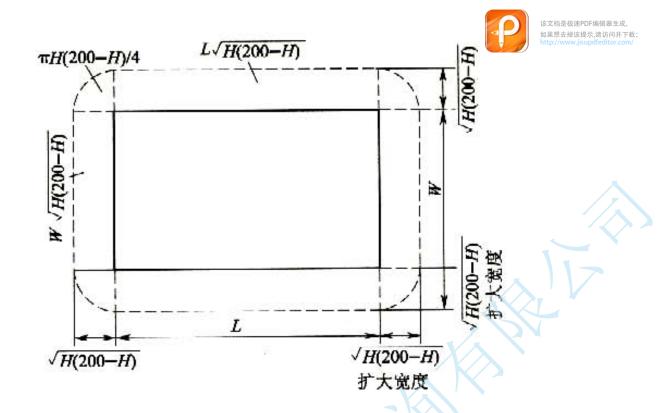


图 A. 0.3 建筑物的等效而积

注:建筑物平面面积扩大后的等效面积如图 A. 0. 3 中周边虚线所包围的面积。

2 当建筑物的高度小于 100m,同时其周边在 2D 范围内有等高或比它低的其他建筑物,这些建筑物不在所考虑建筑物以 $h_r = 100 \text{ (m)}$ 的保护范围内时,按式(Λ . 0. 3-2) 算出的 A。可减去(D/2)×(这些建筑物与所考虑建筑物边长平行以米计的长度总和)× 10^{-6} (km^2)。

当四周在 2D 范围内都有等高或比它低的其他建筑物时,其 等效面积可按下式计算:

$$A_{e} = \left[LW + (L+W)\sqrt{H(200-H)} + \frac{\pi H(200-H)}{4} \right] \times 10^{-6}$$
(A. 0. 3-3)

3 当建筑物的高度小于 100m,同时其周边在 2D 范围内有比它高的其他建筑物时,按式(A. 0. 3-2)算出的等效面积可减去 D×(这些建筑物与所考虑建筑物边长平行以米计的长度总和)× 10⁻⁶(km²)。

当四周在 2D 范围内都有比它高的其他建筑物时,其等效面积可按下式计算:

$$A_{\rm s} - LW \times 10^{-6}$$
 (A. 0, 3-4)

4 当建筑物的高度等于或大于 100m 时,其每边 大宽度 应按等于建筑物的高度计算;建筑物的等效面积应按下式计算:

$$A_e = [LW + 2H(L+W) + \pi H^2] \times 10^{-6}$$
 (A. 0. 3-5)

5 当建筑物的高度等于或大于 100m,同时其周边在 2H 范围内有等高或比它低的其他建筑物,且不在所确定建筑物以滚球半径等于建筑物高度(m)的保护范围内时,按式(A. 0. 3-5)算出的等效面积可减去(H/2)×(这些建筑物与所确定建筑物边长平行以米计的长度总和)×10⁻⁶(km²)。

当四周在 2H 范围内都有等高或比它低的其他建筑物时,其等效面积可按下式计算:

$$A_e = \left[LW + H(L+W) + \frac{\pi H^2}{4} \right] \times 10^{-6}$$
 (A. 0. 3-6)

6 当建筑物的高度等于或大于 100m,同时其周边在 2H 范围内有比它高的其他建筑物时,按式(A. 0. 3-5)算出的等效面积可减去 H×(这些其他建筑物与所确定建筑物边长平行以米计的长度总和)×10⁻⁶(km²)。

当四周在 2H 范围内都有比它高的其他建筑物时,其等效面积可按式(A. 0. 3-4)计算。

7 当建筑物各部位的高不同时,应沿建筑物周边逐点算出最大扩大宽度,其等效面积应按每点最大扩大宽度外端的连接线所包围的面积计算。

该文档是极速PDF编辑器生成, 如果想去掉该提示,请访问并下载 http://www.jsupdfeditor.com/

附录 B 建筑物易受雷击的部位

B.0.1 平屋面或坡度不大于 1/10 的屋面, 檐角、女儿墙、屋檐应为其易受雷击的部位(图 B.0.1)。

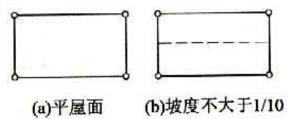


图 B. 0.1 建筑物易受雷击的部位(一) 注:—表示易受雷击部位, —表示不易受雷击的屋脊或屋檐, 。表示雷击率最高部位。

B.0.2 坡度大于 1/10 且小于 1/2 的屋面,屋角、屋脊、檐角、屋檐 应为其易受雷击的部位(图 B.0.2)。

图 B. O. 2 建筑物易受雷击的部位(二)

注:——表示易受雷击部位, 。表示雷击率最高部位。

B.0.3 坡度不小于 1/2 的屋面,屋角、屋脊、檐角应为其易受雷击的部位(图 B.0.3)。

图 B. 0.3 建筑物易受雷击的部位(三)

注:——表示易受雷击部位, -- 表示不易受雷击的屋脊或屋檐,

o 表示雷击率最高部位。

B.0.4 对图 B.0.2 和图 B.0.3,在屋脊有接闪带的情况下,当屋檐处于屋脊接闪带的保护范围内时,屋檐上可不设接闪带。

· 62 ·

该文档是极速PDF编辑器生成, 如果想去掉该提示,请访问并下载: http://www.jisupdfeditor.com/

附录 C 接地装置冲击接地电阻与 工频接地电阻的换算

C. 0.1 接地装置冲击接地电阻与工频接地电阻的换算,应按下式计算:

 $R_{\sim} = A \times R_{i}$

(C, 0, 1)

式中: R_{\sim} ——接地装置各支线的长度取值小于或等于接地体的有效长度 l_{e} ,或者有支线大于 l_{e} 而取其等于 l_{e} 时的工频接地电阻(Ω);

 Λ ——换算系数,其值宜按图 C. 0. 1 确定;

 R_i ——所要求的接地装置冲击接地电阻 (Ω) 。

图 C. 0.1 换算系数 A

注: 1 为接地体最长支线的实际长度,其计量与 1。类同;当 1 大于 1。时, 取其等于 1。。

C.0.2 接地体的有效长度应按下式计算:

$$l_e = 2\sqrt{\rho}$$

(C. 0. 2)

式中: l_e ——接地体的有效长度,应按图 C. 0. 2 计量(m); ρ ——敷设接地体处的土壤电阻率(Ω m)。

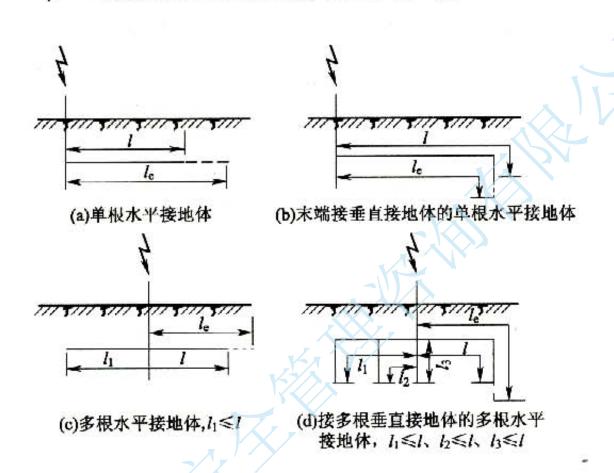


图 C. 0.2 接地体有效长度的计量

- C.0.3 环绕建筑物的环形接地体应按下列方法确定冲击接地电阻:
- 1 当环形接地体周长的一半大于或等于接地体的有效长度时,引下线的冲击接地电阻应为从与引下线的连接点起沿两侧接地体各取有效长度的长度算出的工频接地电阻,换算系数应等于1。
- 2 当环形接地体周长的一半小于有效长度时,引下线的冲击接地电阻应为以接地体的实际长度算出的工频接地电阻再除以换算系数。
- C.0.4 与引下线连接的基础接地体,当其钢筋从与引下线的连 · 64 ·

接点量起大于 20m 时,其冲击接地电阻应为以换算系数等于1 和 以该连接点为圆心、20m 为半径的半球体范围内的钢筋体的工频 接地电阻。

• 65 •

附录 D 滚球法确定接闪器的保护范围

D.0.1 单支接闪杆的保护范围应按下列方法确定(图 D.0.1):

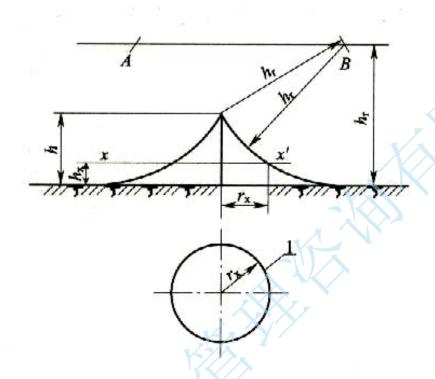


图 D. 0.1 单支接闪杆的保护范围 1-xx'平面上保护范围的截面

- 1 当接闪杆高度 h 小于或等于 h, 时:
 - 1) 距地面 h, 处作一平行于地面的平行线。
 - 2)以杆尖为圆心,h, 为半径作弧线交于平行线的 A、B 两点。
 - 3)以 A、B 为圆心, h, 为半径作弧线,弧线与杆尖相交并与 地面相切。弧线到地面为其保护范围。保护范围为一个 对称的锥体。
 - 4)接闪杆在 h_x 高度的 xx'平面上和地面上的保护半径,应 按下列公式计算:

$$r_{x} = \sqrt{h(2h_{r}-h)} - \sqrt{h_{x}(2h_{r}-h_{x})}$$
 (D. 0. 1-1)

$$r_0 = \sqrt{h(2h_1 - h)}$$
 (D. 0. 1-2)

该文档是极速PDF编辑器生成, 如果想去掉该提示,请访问并下载: http://www.jsupdfedtor.com/

式中: r_x ——接闪杆在 h_x 高度的 xx' 平面上的保护半径(m);

h,——滚球半径,按本规范表 6, 2, 1 和第 4, 5, 5 条的规定 取值(m);

 h_x —被保护物的高度(m);

r₀——接闪杆在地面上的保护半径(m)。

- 2 当接闪杆高度 h 大于 h, 时, 在接闪杆上取高度等于 h, 的一点代替单支接闪杆杆尖作为圆心。其余的做法应符合本条第 1 款的规定。式(D. 0. 1-1)和式(D. 0. 1-2)中的 h 用 h, 代人。
- **D.0.2** 两支等高接闪杆的保护范围,在接闪杆高度 h 小于或等于 h, 的情况下,当两支接闪杆距离 D 大于或等于 $2\sqrt{h(2h_r-h)}$ 时,应各按单支接闪杆所规定的方法确定;当 D 小于2 $\sqrt{h(2h_r-h)}$ 时,应按下列方法确定(图 D, 0, 2):
 - 1 AEBC 外侧的保护范围,应按单支接闪杆的方法确定。
- 2 C、E点应位于两杆间的垂直平分线上。在地面每侧的最小保护宽度应按下式计算:

$$b_0 = CO = EO = \sqrt{h(2h_x - h) - \left(\frac{D}{2}\right)^2}$$
 (D. 0, 2-1)

3 在 AOB 轴线上, 距中心线任一距离 x 处, 其在保护范围上边线上的保护高度应按下式计算:

$$h_x = h_x - \sqrt{(h_x - h)^2 + \left(\frac{D}{2}\right)^2 - x^2}$$
 (D. 0. 2-2)

该保护范围上边线是以中心线距地面 h, 的一点 O'为圆心,

以
$$\sqrt{(h_c-h)^2+\left(\frac{D}{2}\right)^2}$$
为半径所作的圆弧 AB 。

- 4 两杆间 AEBC 内的保护范围, ACO 部分的保护范围应按 下列方法确定:
 - 1)在任一保护高度 h_{*} 和 C 点所处的垂直平面上,应以 h_{*} 作为假想接闪杆,并应按单支接闪杆的方法逐点确定(图 D. 0. 2 中 1 1 剖面图)。

2) 确定 BCO、AEO、BEO 部分的保护范围的方法与ACO 部分的相同。

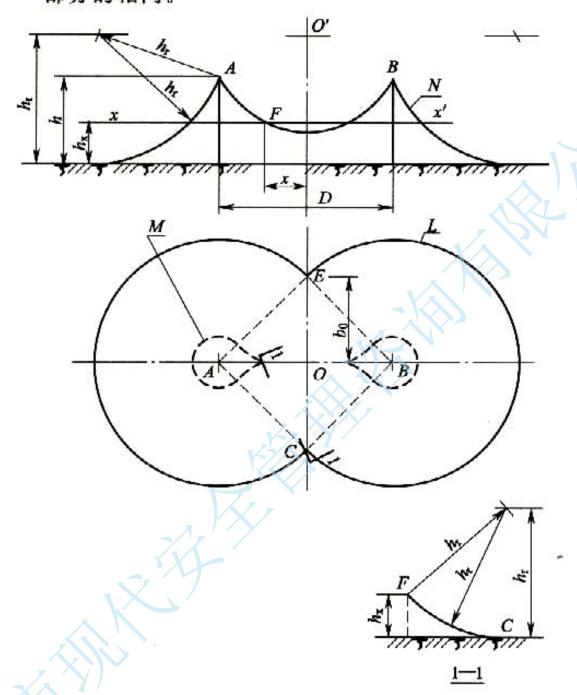


图 D. 0. 2 两支等高接闪杆的保护范围 L一地面上保护范围的截面; M—xx'平面上保护范围的截面; N—AOB 轴线的保护范围

- 5 确定 xx'平面上的保护范围截面的方法。以单支接闪杆的保护半径 r_x 为半径,以 A_x 为圆心作弧线与四边形 AEBC 相交;以单支接闪杆的(r_x)为半径,以 E_x 人为圆心作弧线与上述弧线相交(图 D. 0. 2 中的粗虚线)。
- D.0.3 两支不等高接闪杆的保护范围,在 A 接闪杆的高度 h_1 和

B 接闪杆的高度 h_2 均小于或等于 h_r 的情况下,当两一 接闪杆距点 图 D 大于或等于 $\sqrt{h_1(2h_r-h_1)}+\sqrt{h_2(2h_r-h_2)}$ 时,应各按单支接闪杆 所规 定 的 方 法 确 定;当 D 小于 $\sqrt{h_1(2h_r-h_1)}+\sqrt{h_2(2h_r-h_2)}$ 时,应按下列方法确定(图 D. 0. 3):

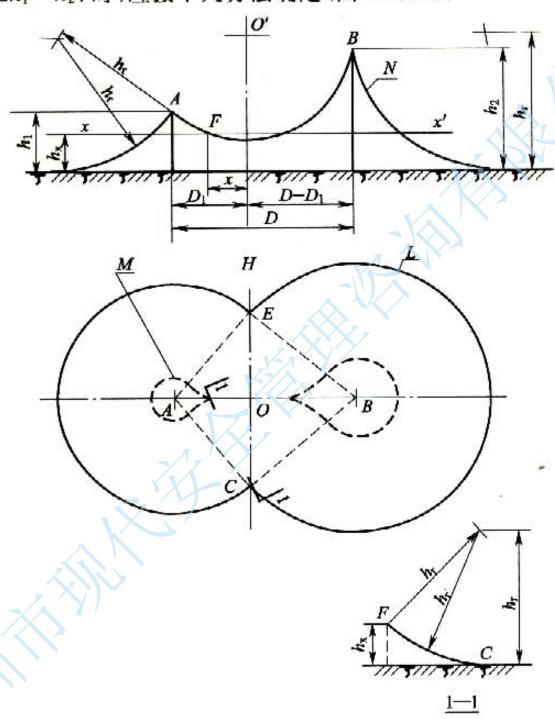


图 D. 0. 3 两支不等高接闪杆的保护范围 L-地面上保护范围的截面; M-xx'平面上保护范围的截面; N-AOB 轴线的保护范围

- 1 AEBC 外侧的保护范围应按单支接闪杆的方法确定。
- 2 CE 线或 HO′线的位置应按下式计算:

$$D_1 = \frac{(h_r - h_2)^2 - (h_r - h_1)^2 + D^2}{2D}$$

(D. 0. 3-1)

3 在地面每侧的最小保护宽度应按下式计算:

$$b_0 = CO = EO = \sqrt{h_1(2h_1 - h_1) - D_1^2}$$
 (D. 0. 3-2)

4 在 AOB 轴线上, A、B 间保护范围上边线位置应按下式计算;

$$h_x = h_r - \sqrt{(h_r - h_1)^2 + D_1^2 - x^2}$$
 (D. 0. 3-3)

式中: x——距 CE 线或 HO' 线的距离。

该保护范围上边线是以 HO'线上距地面 h, 的一点 O'为圆心,以 $\sqrt{(h_1-h_1)^2+D_1^2}$ 为半径所作的圆弧 AB。

- 5 两杆间 AEBC 内的保护范围, ACO 与 AEO 是对称的, BCO 与 BEO 是对称的, ACO 部分的保护范围应按下列方法确定:
 - 1)在任一保护高度 h_x 和 C 点所处的垂直平面上,以 h_x 作为假想接闪杆,按单支接闪杆的方法逐点确定(图 D. 0. 3 的 1—1 剖面图)。
 - 2)确定 AEO、BCO、BEO 部分的保护范围的方法与 ACO 部分相同。
- 6 确定 xx'平面上的保护范围截面的方法应与两支等高接。 闪杆相同。
- **D. 0.4** 矩形布置的四支等高接闪杆的保护范围,在 h 小于或等于 h, 的情况下,当 D_3 大于或等于 $2\sqrt{h(2h_r-h)}$ 时,应各按两支等高接闪杆所规定的方法确定;当 D_3 小于 $2\sqrt{h(2h_r-h)}$ 时,应按下列方法确定(图 D_3 D_4);
 - 1 四支接闪杆外侧的保护范围应各按两支接闪杆的方法确定。
- 2 B、E接闪杆连线上的保护范围见图 D. 0. 4 中 1—1 剖面图,外侧部分应按单支接闪杆的方法确定。两杆间的保护范围应按下列方法确定:
 - 1)以 B、E 两杆杆尖为圆心、h, 为半径作弧线相交于 O 点, 以 O 点为圆心、h, 为半径作弧线,该弧线与杆尖相连的

这段弧线即为杆间保护范围。

2)保护范围最低点的高度 h。应按下式计算:

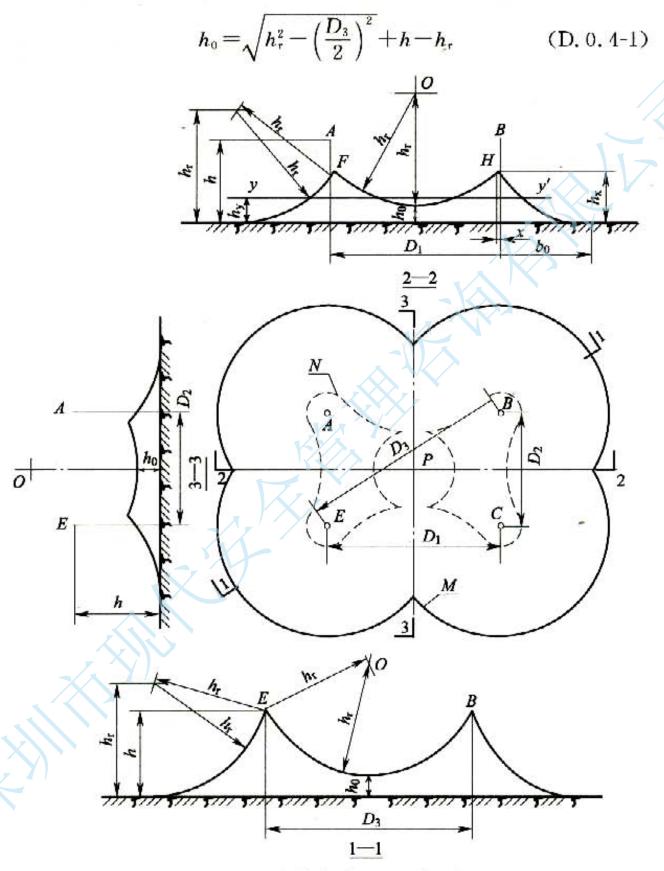
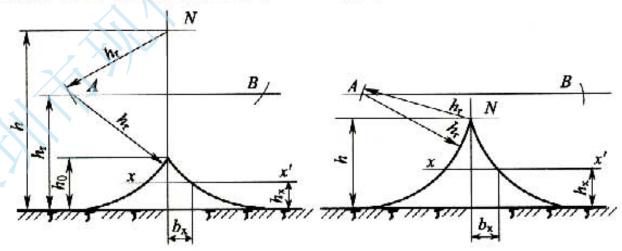


图 D. 0. 4 四支等高接闪杆的保护范围 M—地面上保护范围的截面; N—yy'平面上保护范围的截面


3 图 D, 0, 4 中 2—2 剖面的保护范围,以 P 点的垂直线上的 O 点 (距地面的高度为 $h_r + h_o$)为圆心、 h_r 为半径作弧线,与 B、C 和 A、E 两支接闪杆所作的在该剖面的外侧保护范围延长弧线相交于 F、H 点。

F点(H点与此类同)的位置及高度可按下列公式计算:

$$(h_x - h_x)^2 = h_x^2 - (b_0 + x)^2$$
 (D. 0. 4-2)

$$(h_r + h_0 - h_x)^2 = h_r^2 - \left(\frac{D_1}{2} - x\right)^2$$
 (D. 0. 4-3)

- 4 确定图 D. 0. 4 中 3-3 剖面保护范围的方法应符合本条第 3 款的规定。
- 5 确定四支等高接闪杆中间在 h_0 至 h 之间于 h_v 高度的 yy' 平面上保护范围截面的方法为以 P 点(距地面的高度为 $h_r + h_0$) 为圆心、 $\sqrt{2h_r(h_y h_0) (h_y h_0)^2}$ 为半径作圆或弧线,与各两支接闪杆在外侧所作的保护范围截面组成该保护范围截面(图 D. 0. 4中虚线)。
- D. 0.5 单根接闪线的保护范围, 当接闪线的高度 h 大于或等于 2h, 时,应无保护范围; 当接闪线的高度 h 小于 2h, 时,应按下列方法确定(图 D. 0.5)。确定架空接闪线的高度时应计及弧垂的影响。在无法确定弧垂的情况下, 当等高支柱间的距离小于 120m 时, 架空接闪线中点的弧垂宜采用 2m, 距离为 120m~150m 时宜采用 3m。

(a) 当h小于2hr, 且大于hr时

(b) 当h小于或等于hi时

图 D. 0.5 单根架空接闪线的保护范围 N-接闪线

- 1 距地面 h, 处作一平行于地面的平行线。
- 2 以接闪线为圆心、h, 为半径,作弧线交于平行线的 A、B 两点。
- 3 以A、B为圆心,h,为半径作弧线,该两弧线相交或相切, 并与地面相切。弧线至地面为保护范围。
- 4 当 h 小于 2h, 且大于 h, 时,保护范围最高点的高度应按下式计算:

$$h_0 = 2h_1 - h$$
 (D. 0. 5-1)

5 接闪线在 h_x 高度的 xx' 平面上的保护宽度,应按下式计算:

$$b_{x} = \sqrt{h(2h_{r}-h)} - \sqrt{h_{x}(2h_{r}-h_{x})}$$
 (D. 0. 5-2)

式中: h_x ——接闪线在 h_x 高度的 xx'平面上的保护宽度(m);

h---接闪线的高度(m);

h_r——滚球半径,按本规范表 6.2.1 和第 4.5.5 条的规定 取值(m);

 h_x —被保护物的高度(m)。

- 6 接闪线两端的保护宽度应按单支接闪杆的方法确定。
- D.0.6 两根等高接闪线的保护范围应按下列方法确定:
- 1 在接闪线高度 h 小于或等于 h 的情况下,当 D 大于或等于 $2\sqrt{h(2h,-h)}$ 时,应各按单根接闪线所规定的方法确定;当 D 小于 $2\sqrt{h(2h,-h)}$ 时,应按下列方法确定(图 D. 0. 6-1):

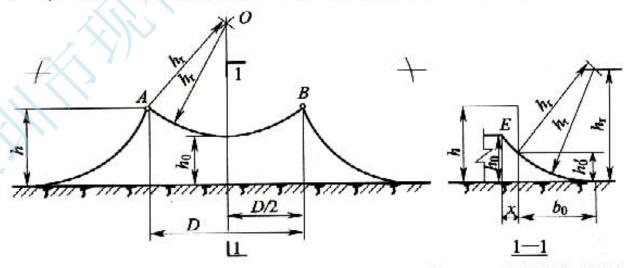


图 D. 0. 6-1 两根等高接闪线在高度 h 小于或等于 h, 时的保护范围 1) 两根接闪线的外侧,各按单根接闪线的方法确定。

- 2) 两根接闪线之间的保护范围按以下方法确定: 以 A、B 两接闪线为圆心, h, 为半径作圆弧交于 O点,以 O点为圆心、h, 为半径作弧线交于 A、B点。
- 3) 两根接闪线之间保护范围最低点的高度按下式计算:

$$h_0 = \sqrt{h_\tau^2 - \left(\frac{D}{2}\right)^2} + h - h_\tau$$
 (D. 0. 6-1)

4)接闪线两端的保护范围按两支接闪杆的方法确定,但在中线上 h_o 线的内移位置按以下方法确定(图 D. 0. 6-1 中1—1 剖面):以两支接闪杆所确定的保护范围中最低点的高度 $h'_o = h_r - \sqrt{(h_r - h)^2 + \left(\frac{D}{2}\right)^2}$ 作为假想接闪杆,将其保护范围的延长弧线与 h_o 线交于 E 点。内移位置的距离也可按下式计算:

$$x = \sqrt{h_0(2h_r - h_0)} - b_0$$
 (D. 0, 6-2)

式中: b。——按式(D.0, 2-1)计算。

- 2 在接闪线高度 h 小于 2h, 且大于 h, 接闪线之间的距离 D 小于 2h, 且大于 $2[h, -\sqrt{h(2h, -h)}]$ 的情况下,应按下列方法确定(图 D. 0. 6-2):
 - 1) 距地面 h, 处作一与地面平行的线。
 - **2**)以 $A \setminus B$ 两接闪线为圆心,h, 为半径作弧线交于 O 点并与平行线相交或相切于 $C \setminus E$ 点。
 - 3)以 O 点为圆心、h, 为半径作弧线交于 A、B 点。
 - **4**) 以 *C*、*E* 为圆心, *h*, 为半径作弧线交于 *A*、*B* 并与地面相切。
 - 5)两根接闪线之间保护范围最低点的高度按下式计算:

$$h_0 = \sqrt{h_r^2 - \left(\frac{D}{2}\right)^2} + h - h_r$$
 (D. 0. 6-3)

6)最小保护宽度 bm 位于 h. 高处,其值按下式计算:

$$b_{\rm m} = \sqrt{h(2h_{\rm r}-h)} + \frac{D}{2} - h_{\rm r}$$

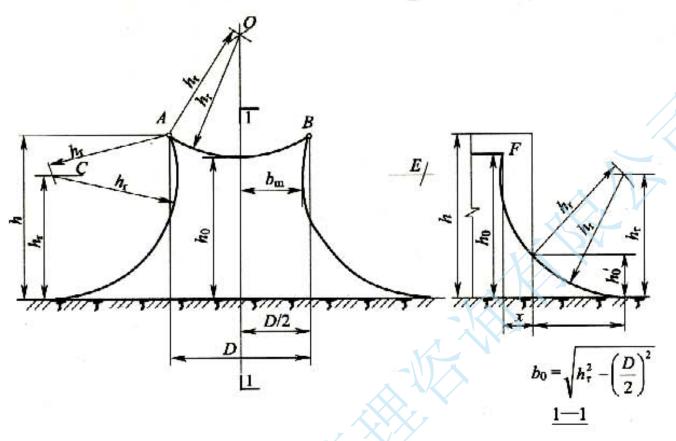


图 D. 0. 6-2 两根等高接闪线在高度 h 小于 2h, 且大于 h, 时的保护范围 7)接闪线两端的保护范围按两支高度 h, 的接闪杆确定,但在中线上 h。线的内移位置按以下方法确定(图 D. 0. 6-2的 1-1 剖面):以两支高度 h,的接闪杆所确定的保护范围中点最低点的高度 $h'_0 = \left(h_r - \frac{D}{2}\right)$ 作为假想接闪杆,将其保护范围的延长弧线与 h。线交于 F 点。内移位置的距离也可按下式计算:

$$x = \sqrt{h_0 (2h_r - h_0)} - \sqrt{h_r^2 - \left(\frac{D}{2}\right)^2}$$
 (D. 0. 6-5)

D. 0.7 本规范图 D. 0.1~图 D. 0.5、图 D. 0.6-1 和图 D. 0.6-2 中所画的地面也可是位于建筑物上的接地金属物、其他接闪器。当接闪器在地面上保护范围的截面的外周线触及接地金属物、其他接闪器时,各图的保护范围均适用于这些接闪器;当接地金属物、其他接闪器是处在外周线之内且位于被保护部位的边沿时,应按

下列方法确定所需断面的保护范围(图 D. 0. 7):

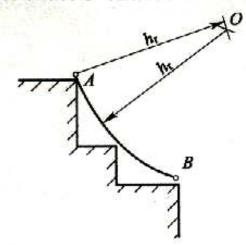
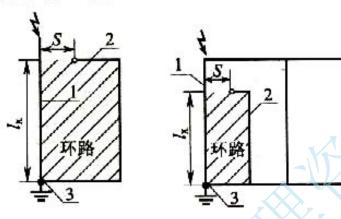
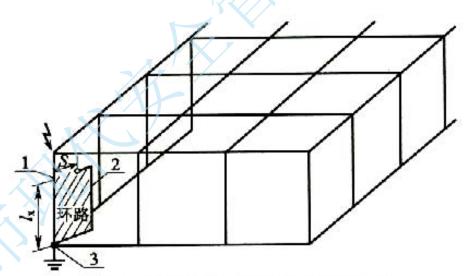


图 D. 0.7 确定建筑物上任两接闪器在所需断面上的保护范围 A 接闪器; B—接地金属物或接闪器


- 1 应以 $A \setminus B$ 为圆心 h, 为半径作弧线相交于 O 点。
- 2 应以 O 点为圆心、h, 为半径作弧线 AB, 弧线 AB 应为保护范围的上边线。

本规范图 D. 0. 1~图 D. 0. 5、图 D. 0. 6-1 和图 D. 0. 6-2 中凡接闪器在"地面上保护范围的截面"的外周线触及的是屋面时,各图的保护范围仍有效,但外周线触及的屋面及其外部得不到保护,内部得到保护。


附录E 分流系数 k。

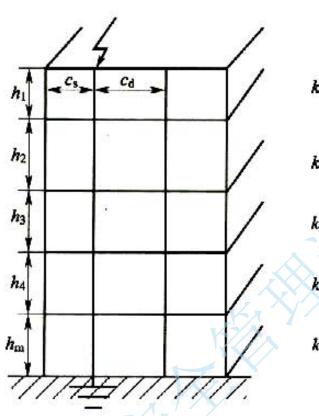
E. 0.1 单根引下线时,分流系数应为1;两根引下线及接闪器不成闭合环的多根引下线时,分流系数可为0.66,也可按本规范图 E. 0.4 计算确定;图 E. 0.1(c)适用于引下线根数 n 不少于3 根,当接闪器成闭合环或网状的多根引下线时,分流系数可为0.44。

(a)单根引下线

(b)两根引下线及接闪器不成闭合环 的多根引下线

(c)接闪器成闭合环或网状的多根引下线

图 E, 0.1 分流系数 k_c(1)


1-引下线;2-金属装置或线路;3 直接连接或通过电涌保护器连接;

- 注:1 8为空气中间隔距离,1,为引下线从计算点到等电位连接点的长度;
 - 2 本图适用于环形接地体。也适用于各引下线设独自的接地体且各独自接地体

的冲击接地电阻与邻近的差别不大于2倍;若差别大于2倍时

- 3 本图适用于单层和多层建筑物。
- E.0.2 当采用网格型接闪器、引下线用多根环形导体互相连接、接地体采用环形接地体,或利用建筑物钢筋或钢构架作为防雷装置时,分流系数宜按图 E.0.2 确定。

$$k_{\rm cl} = \frac{1}{2n} + 0.1 + 0.2 \times \sqrt[3]{\frac{c}{h_1}}$$

$$k_{c2} = \frac{1}{n} + 0.1$$

$$k_{a3} = \frac{1}{n} + 0.01$$

$$k_{04} = \frac{1}{n}$$

$$k_{\rm om} = k_{\rm o4} = \frac{1}{n}$$

图 E, 0, 2 分流系数 ks(2)

- 注,1 h₁~h_m为连接引下线各环形导体或各层地面金属体之间的距离,c_s,c_d为某引下线顶雷击点至两侧最近引下线之间的距离,计算式中的c取二者较小值,n为 建筑物周边和内部引下线的根数且不少于4根。c和h₁取值范围在3m~20m。
 - 2 本图适用于单层至高层建筑物。
- E.0.3 在接地装置相同的情况下,即采用环形接地体或各引下线设独自接地体且其冲击接地电阻相近,按图 E.0.1 和图 E.0.2 确定的分流系数不同时,可取较小者。
- E.0.4 单根导体接闪器按两根引下线确定时,当各引下线设独自的接地体且各独自接地体的冲击接地电阻与邻近的差别不大于2倍时,可按图 E.0.4 计算分流系数;若差别大于2倍时,分流系数应为1。

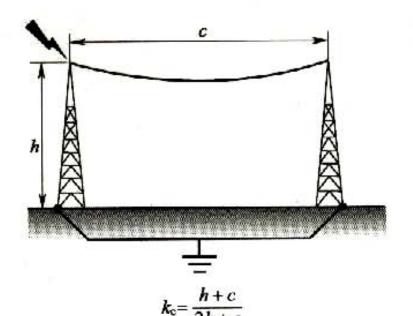


图 E. 0.4 分流系数 k_c(3)

附录F 雷 电 流

F. 0.1 闪电中可能出现的三种雷击见图 F. 0.1-1,其参量应按表 F. 0.1-1~表 F. 0.1-4 的规定取值。雷击参数的定义应符合图 F. 0.1-2的规定。

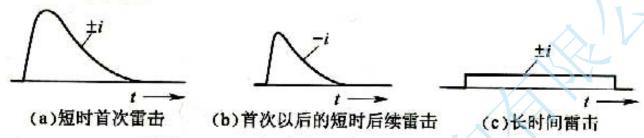
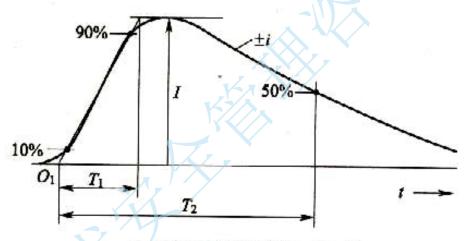
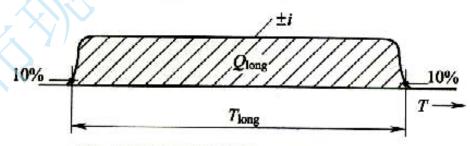




图 F. 0.1-1 闪电中可能出现的三种雷击

(a)短时雷击(典型值T2<2ms)

I—峰值电流(幅值), T_1 —波头时间, T_2 —半值时间

(b)长时间雷击(典型值2ms<T_{long}<1s)

 T_{long} 一波头及波尾幅值为峰值10%两点之间的时间间隔: Q_{long} 一长时间雷击的电荷量

图 F. 0. 1-2 雷击参数定义

- 注:1 短时雷击电流波头的平均陡度(average steepness of the front of short stroke current)是在时间间隔(t_2-t_1)内电流的平均变化率,即用该时间间隔的起点电流与末尾电流之差[$i(t_2)-i(t_1)$]除以(t_2-t_1)[见图 F. 0. 1-2(a)]。
 - 2 短时雷击电流的波头时间 T_1 (front time of short stroke current T_1)是一规定参数,定义为电流达到 10% 和 90% 幅值电流之间的时间间隔乘以 1.25,见图 F,0,1-2(a)。
 - 3 短时雷击电流的规定原点 O_1 (virtual origin of short stroke current O_1)是连接雷击电流波头 10%和 90%参考点的延长直线与时间横坐标相交的点,它位于电流到达 10%幅值电流时之前 $0.1T_1$ 处,见图 F.0.1-2(a)。
 - 4 短时雷击电流的半值时间 T_2 (time to half value of short stroke current T_2) 是一规定参数,定义为规定原点 O_1 与电流降至幅值一半之间的时间间隔,见图 F.0.1-2(a)。

表 F. 0. 1-1 首次正极性雷击的雷电流参量

雷电流参数	防雷建筑物类别			
	一类	二类	三类	
幅值 I(kA)	200	150	100	
波头时间 T ₁ (μs)	10	10	10	
半值时间 T ₂ (μs)	350	350	350	
电荷量 Q _s (C)	100	75	50	
单位能量 W/R(MJ/Ω)	10	5.6	2.5	

表 F. 0.1-2 首次负极性雷击的雷电流参量

雷电流参数	防雷建筑物类别			
	·类	二类	三类	
幅值 I(kA)	100	75	50	
波头时间 T ₁ (μs)	1	1	1	
半值时间 T ₂ (μs)	200	200	200	
平均陡度 I/T ₁ (kA/μs)	100	75	50	

注:本波形仅供计算用,不供作试验用。

表 F. O. 1-3 首次负极性以后雷击的雷电流参量

雷电流参数	防雷建筑物类别			
	一类	二类	三类	
幅值 I(kA)	50	37. 5	25	
波头时间 T ₁ (μs)	0. 25	0, 25	0. 25	
半值时间 T ₂ (μs)	100	100	100	
平均陡度 I/T ₁ (kA/µs)	200	150	100	

表 F. O. 1-4 长时间雷击的雷电流参量

雷电流参数	防雷建筑物类別			
田七加沙双	一类	二类	三类	
电荷量 Q _i (C)	200	150	100	
时间 T(s)	0.5	0, 5	0.5	

注:平均电流 I≈Q1/T。

附录 G 环路中感应电压和电流的计算

G. 0.1 格栅形屏蔽建筑物附近遭雷击时,在 LPZ1 区内环路的感应电压和电流(图 G. 0.1)在 LPZ1 区,其开路最大感应电压宜按下式计算:

$$U_{\text{oc/max}} = \mu_0 \cdot b \cdot l \cdot H_{1/\text{max}}/T_1 \qquad (G. 0. 1-1)$$

式中: $U_{\text{oc/max}}$ --- 环路开路最大感应电压(V);

 μ_o ——真空的磁导系数,其值等于 $4\pi \times 10^{-7}$ (V·s)/(Λ ·m);

b--- 环路的宽(m);

l--- 环路的长(m);

II_{1/max} —LPZ1 区内最大的磁场强度(A/m),按本规范式 (6.3.2-2)计算;

 T_1 一雷电流的波头时间(s)。

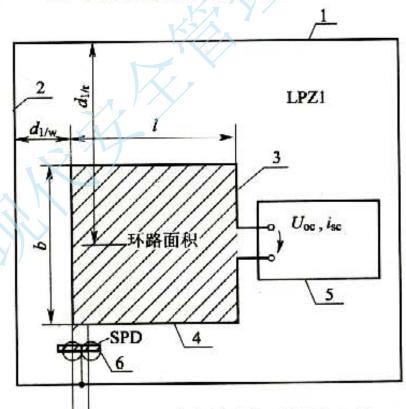


图 G. 0.1 环路中的感应电压和电流 1—屋顶;2—墙;3—电力线路;4—信号线路; 5—信号设备;6—等电位连接带

- 注:1 当环路不是矩形时,应转换为相同环路面积的矩形环路;
 - 2 图中的电力线路或信号线路也可是邻近的两端做了等电位连接的金属物。

若略去导线的电阻(最坏情况),环路最大短路电流可按下式 计算:

$$i_{\text{sc/max}} = \mu_0 \cdot b \cdot l \cdot H_{1/\text{max}}/L \qquad (G. 0. 1-2)$$

式中: $i_{ac/max}$ —最大短路电流(A);

L 环路的自电感(H),矩形环路的自电感可按公式 (G, 0, 1-3)计算。

矩形环路的自电感可按下式计算:

$$L = \left\{ 0.8 \sqrt{l^2 + b^2} - 0.8(l+b) + 0.4 \cdot l \cdot \ln\left[\frac{(2b/r)}{(1 + \sqrt{1 + (b/l)^2})} \right] + 0.4 \cdot b \cdot \ln\left[\frac{(2l/r)}{(1 + \sqrt{1 + (l/b)^2})} \right] \right\} \times 10^{-6}$$

(G. 0, 1-3)

式中:r 环路导体的半径(m)。

G.0.2 格栅形屏蔽建筑物遭直接雷击时,在LPZ1区内环路的感应电压和电流(图 G.0.1)在LPZ1区 V。空间内的磁场强度 H₁应按木规范式(6.3.2-8)计算。根据图 G.0.1 所示无屏蔽线路构成的环路,其开路最大感应电压宜按下式计算:

$$U_{\text{oc/max}} = \mu_0 \cdot b \cdot \ln(1 + l/d_{\text{l/w}}) \cdot k_{\text{H}} \cdot (w/\sqrt{d_{\text{l/r}}}) \cdot i_{\text{0/max}}/T_1$$
(G. 0. 2-1)

式中: $d_{1/w}$ — 环路至屏蔽墙的距离(m),根据本规范式(6.3.2-9) 或式(6.3.2-10) 计算, $d_{1/w}$ 等于或大于 $d_{s/2}$;

 $d_{\rm Vr}$ — 环路至屏蔽屋顶的平均距离(m);

i_{0/max}——LPZO_A 区内的雷电流最大值(A);

 $k_{\rm H}$ —形状系数 $(1/\sqrt{m})$,取 $k_{\rm H}=0.01(1/\sqrt{m})$;

w--格棚形屏蔽的网格宽(m)。

若略去导线的电阻(最坏情况),最大短路电流可按下式计算:

$$i_{\text{sc/max}} = \mu_0 \cdot b \cdot \ln(1 + l/d_{1/w}) \cdot k_{\text{H}} \cdot (w/\sqrt{d_{1/r}}) \cdot i_{0/\text{max}}/L$$

(G. 0. 2-2)

G. 0.3 在 LPZn 区 (n 等于或大于 2) 内环路的感应电压和电流在 LPZn 区 V_s 空间内的磁场强度 H_n 看成是均匀的情况下(见本规范图 6.3.2-2),图 G. 0.1 所示无屏蔽线路构成的环路,其最大感应电压和电流可按式(G. 0.1-1)和式(G. 0.1-2)计算,该两式中的 $H_{1/\max}$ 应根据本规范式(6.3.2-2)或式(6.3.2-11)计算出的 $H_{u/\max}$ 代入。式(6.3.2-2)中的 H_1 用 $H_{u/\max}$ 代入, H_0 用 $H_{(n 1)/\max}$ 代入。

附录 H 电缆从户外进入户内的屏蔽层截面积

H.0.1 在屏蔽线路从室外 LPZO_A 或 LPZO_B 区进入 LPZ1 区的情况下,线路屏蔽层的截面应按下式计算。

$$S_{\rm c} \geqslant \frac{I_{\rm f} \times \rho_{\rm c} \times L_{\rm c} \times 10^6}{U_{\rm w}}$$
 (H. 0. 1)

式中: S_c ——线路屏蔽层的截面(mm^2);

I₁—流入屏蔽层的雷电流(kA),按本规范式(4.2.4-7)计算,计算中的雷电流按本规范表 F. 0.1-1 的规定取值;

ρ_c——屏蔽层的电阻率(Ωm),20℃时铁为 138×10 °Ωm, 铜为 17.24×10 °Ωm,铝为 28.264×10⁻⁹Ωm;

 L_c 线路长度(m),按本附录表 H. 0.1-1 的规定取值;

U_w——电缆所接的电气或电子系统的耐冲击电压额定值 (kV),设备按本附录表 H. 0. 1-2 的规定取值,线路 按本附录表 H. 0. 1-3 的规定取值。

表 H. 0.1-1 按屏蔽层敷设条件确定的线路长度

屏蔽层敷设条件	L _c (m)	
屏蔽层与电阻率 ρ(Ωm)的土壤 直接接触	当实际长度 $\geq 8\sqrt{\rho}$ 时,取 $L_c=8\sqrt{\rho}$, 当实际长度 $\leq 8\sqrt{\rho}$ 时,取 L_c —线路实际长度	
屏蔽层与土壤隔离或敷设在大气 中	L。=建筑物与屏蔽层最近接地点之间的距离	

表 H, 0, 1-2 设备的耐冲击电压额定值

设备类型	耐冲击电压额定值 U、(kV)	
电子设备	1.5	
用户的电气设备(Un<1kV)	2. 5	
电网设备(Un<1kV)	6	

表 H. 0. 1-3 电缆绝缘的耐冲击电压额定值

电缆种类及其额定电压	耐冲击电压额定值	
$U_{n}(kV)$	$U_{\mathbf{w}}(\mathbf{k}\mathbf{V})$	
纸绝缘通信电缆	1.5	
塑料绝缘通信电缆	5	
电力电缆 U _n ≤ 1	15	
电力电缆 U _n =3	45	
电力电缆 U _n =6	60	
电力电缆 Un=10	75	
电力电缆 U _n -15	95	
电力电缆 U _n =20	125	

H.0.2 当流入线路的雷电流大于按下列公式计算的数值时,绝缘可能产生不可接受的温升:

对屏蔽线路:

$$I_{\rm f} = 8 \times S_{\rm c}$$
 (H. 0. 2-1)

对无屏蔽的线路:

$$I_i' = 8 \times n' \times S_i' \qquad (H. 0. 2-2)$$

式中: I_1' —流入无屏蔽线路的总雷电流(kA);

n'——线路导线的根数;

 S'_{ς} 每根导线的截面 $(mm^2)_{\varsigma}$

H.0.3 本附录也适用于用钢管屏蔽的线路,对此,式(H.0.1)和式(H.0.2-1)中的S。为钢管壁厚的截面。

附录 J 电涌保护器

J.1 用于电气系统的电涌保护器

J.1.1 电涌保护器的最大持续运行电压不应小于表 J.1.1 所规定的最小值;在电涌保护器安装处的供电电压偏差超过所规定的10%以及谐波使电压幅值加大的情况下,应根据具体情况对限压型电涌保护器提高表 J.1.1 所规定的最大持续运行电压最小值。

表 J. J. 1 电涌保护器取决于系统特征所要求的最大持续运行电压最小值

电涌保护器 接于 TT系统		配电网络的系统特征			
	TT 系统	TN-C 系统	TN-S系统	引出中性线 的 IT 系统	无中性线引出 的 IT 系统
每一相线与 中性线间	$1.15U_{0}$	不适用	1. 15Uu	$1.15U_0$	不适用 -
每一相线与 PE 线问	1.15U ₀	不适用	$1.15U_{0}$	√3U ₀ Φ	相间电压 ^①
中性线与 PE 线间	<i>U</i> ₀ ⁰	不适用	<i>U</i> ₀ ^Ф	<i>U</i> ₀ [⊕]	不适用
每一相线与 PEN 线间	不适用	1, 15U ₀	不适用	不适用	不适用

- 注:1 标有①的值是故障下最坏的情况,所以不需计及15%的允许误差。
 - 2 U。是低压系统相线对中性线的标称电压,即相电压 220V。
 - 3 此表基于按现行国家标准《低压配电系统的电涌保护器(SPD) 第 1 部分: 性能要求和试验方法》GB 18802.1 做过相关试验的电涌保护器产品。
- **J.1.2** 电涌保护器的接线形式应符合表 J.1.2 的规定。具体接线图见图 J.1.2-1~图 J.1.2-5。